

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

AUTOMATIC WEB-BASED CALIBRATION OF
NETWORK-CAPABLE SHIPBOARD SENSORS

by

Charles K. Le

September 2007

 Thesis Advisor: Xiaoping Yun
 Second Reader: Roberto Cristi

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Automatic Web-based Calibration of Network-
capable Shipboard Sensors
6. AUTHOR(S) Charles K. Le

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis investigates the feasibility of developing an automatic web-based sensor calibration system with four main
objectives. The first objective was to reduce the number of personnel required to calibrate shipboard sensors. The
second was to reduce the time required to complete the calibration process. The third was to develop a platform
independent and user-friendly interface using the web browser. The fourth was to allow operators to calibrate the
sensors remotely from thousands of miles away. This was achieved by using the commercial off the shelf (COTS)
products, developing in-house hardware, setting up a web server and developing numerous software programs in
Labview and Java languages to allow operators to remotely monitor, and control the calibration process. All
communication and control algorithms are handled by two computers. One serves as a web server, equipped with
java codes and web pages to interface with an operator. The other serves as a data collector. It collects data from all
sensors via the network, passes these data to the web server computer and then to the operator’s web browser. It also
runs a calibration algorithm on a selected sensor as requested by the user. The two computers communicate with one
another via the ship’s LAN using UDP packets.

15. NUMBER OF
PAGES

135

14. SUBJECT TERMS Network-Based Calibration, Wireless LAN, UDP, Labview, Smart Sensors,
Pressure Sensors, Tomcat Web Server, Java, Applet, and Servlet.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

 THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AUTOMATIC WEB-BASED CALIBRATION OF NETWORK-CAPABLE
SHIPBOARD SENSORS

Charles Khang Duy Le

Lieutenant, United States Navy
B.S. EE, University of Texas at Austin, 1998

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2007

Author: Charles K. Le

Approved by: Xiaoping Yun
Thesis Advisor

Roberto Cristi
Second Reader

Jeffrey B. Knorr
Chairman, Department of Electrical Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis investigates the feasibility of developing an automatic web-based

sensor calibration system with four main objectives. The first objective was to reduce the

number of personnel required to calibrate shipboard sensors. The second was to reduce

the time required to complete the calibration process. The third was to develop a

platform independent and user-friendly interface using the web browser. The fourth was

to allow operators to calibrate the sensors remotely from thousands of miles away. This

was achieved by using the commercial off the shelf (COTS) products, developing in-

house hardware, setting up a web server and developing numerous software programs in

Labview and Java languages to allow operators to remotely monitor, and control the

calibration process. All communication and control algorithms are handled by two

computers. One serves as a web server, equipped with java codes and web pages to

interface with an operator. The other serves as a data collector. It collects data from all

sensors via the network, passes these data to the web server computer and then to the

operator’s web browser. It also runs a calibration algorithm on a selected sensor as

requested by the user. The two computers communicate with one another via the ship’s

LAN using UDP packets.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. CURRENT CALIBRATION PROCESS...1
C. OBJECTIVES AND APPROACH...2
D. RELATED WORK ..2
E. BENEFIT OF CONCEPT TO THE NAVY ..3
F. THESIS OUTLINE..3

II. OVERVIEW OF RESEARCH GOALS AND CONTRIBUTIONS5
A. PROBLEM STATEMENT AND RESEARCH GOALS5
B. OVERVIEW OF CONTRIBUTIONS ...6

1. Reduce Personnel Requirement by at least 50 Percent6
2. Reduce Calibration Time by 75 Percent..7
3. Enhance User-friendly Interface ..8
4. Automatic and Remote Calibration ...9

C. SUMMARY ..9

III. HARDWARE DESCRIPTION AND DISCUSSION ...11
A. INTRODUCTION TO HARDWARE..11
B. SHIPBOARD NETWORK ...12

1. 3COM Router...13
a. Description ..13
b. Configuration..14

2. NETGEAR PoE Switch ...16
3. Linksys Wireless Router ...17

C. VLINX RS232-TO-ETHERNET ADAPTER ...18
1. Description..18
2. Configuration ...18

D. WEB SERVER COMPUTER...21
1. Description..21
2. Configure the Tomcat Web Server ..21
3. Set up the JAVA Development Environment..................................25

E. CALIBRATING COMPUTER...25
F. ELECTRIC PUMP, OPENING VALVE, AND CONTROLLERS26
G. SENSORS ...28

1. Honeywell Precision Pressure Transducer (PPT)...........................29
2. ISI Pressure Sensor..30
3. Crystal XP2 Portable Pressure Calibrator (PPC)34
4. Analog Sensor...36
5. Zigbee Sensor ...36

IV. SOFTWARE...39
A. INTRODUCTION..39
B. COMMUNICATION BETWEEN COMPONENTS..................................40

 viii

1. Communication between a Web Page and the Web Server
Computer ..40
a. Communication from an Applet to the Web Server...............41
b. Communication from the Web Server to an Applet...............42

2. Communication between the Web Server Computer and the
Calibrating Computer ...43
a. Communication from the Web Server Computer to the

Calibrating Computer ...43
b. Communication from the Calibrating Computer to the

Web Server Computer ...44
3. Communication between the Calibrating Computer and

Sensors ..45
4. Communication from the Calibrating Computer to Controllers

of the Pump and the Valve ..46
C. CALIBRATION WEB PAGES ..46
D. JAVA CODES ..48

1. Introduction..48
2. Java Applets ...49

a. Image Applet ...49
b. Sensor Applet...49

3. Java Servlet...51
a. Image Servlet...51
b. Sensor Servlet..51

E. LABVIEW CODE..52
1. Description..52
2. External Communication Module ..56
3. Sensor Data Collector Module..57
4. Sensor Interfaces..58

a. PPT Sensor Interface..58
b. ISI Sensor Interface..60
c. PPC Interface..61
d. Analog Sensor Interface ...62

5. Command Handler Module ..63
6. Sensor Calibration Module ...64

a. Interfacing with the Electrical Pump and the Opening
Valve ..66

b. Pump and Valve Control Algorithm.......................................68
c. Calibration Algorithm...70

V. RESULTS AND LESSONS LEARNED ..75
A. INTRODUCTION..75
B. THE CONCEPT...75
C. THE BEGINNING...75
D. THE ADJUSTMENT PHASE ..77
E. THE FINISHING TOUCHES ..78
F. LESSONS LEARNED...78

 ix

1. Working with the Existing System ...78
2. Unforeseen Problems...79
3. Strength and Weakness of Labview Programming Language79
4. Synchronization..79
5. NCAP Box Performance Problem..80

VI. CONCLUSIONS AND RECOMMENDATIONS...81
A. SUMMARY ..81
B. CONCLUSION ..81
C. RECOMMENDATION...81

1. Portability ...81
2. Interoperability ..82
3. Network Security ...82
4. Robust Software Architecture ..83

APPENDIX - JAVA CODES ..85
A. IMAGESERVLET.JAVA ...85
B. IMAGEAPPLET.JAVA ..85
C. SENSORSERVLET.JAVA ...87
D. SENSORAPPLET.JAVA ..92
E. WEB.XML..107

LIST OF REFERENCES..109

INITIAL DISTRIBUTION LIST ...111

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Diagram of a Ship’s Network using Wireless NCAP and Gateway [From
Ref. 1]. ...6

Figure 2. GUI of a Web-based Automatic Calibration System...7
Figure 3. Diagram of a Ship’s Sensor Network Displayed on a Web Browser.8
Figure 4. Connection of Pressure Sensors to the Pressurized Pipe System on a

Virtual Ship..11
Figure 5. Diagram of a Ship’s Integrated Sensor Network. ..12
Figure 6. The Virtual Ship’s LAN is made of a 3COM Router, a Netgear Switch,

and a Linksys Wireless Router. ...13
Figure 7. Add PoE and LAN to the Virtual Ship’s LAN by Connecting the Router’s

LAN port to the Netgear Switch’s non-PoE LAN port....................................14
Figure 8. IP Addresses assigned to Each Network Interface by the 3COM Router........15
Figure 9. Configuring a 3COM Router with a Static IP Address using a Web

Browser. ...15
Figure 10. Configuring HTTP Server Port on the Firewall of the 3COM Router.16
Figure 11. A Netgear PoE Switch is used to provide PoE to sensors and add more

Ethernet ports to the virtual ship’s LAN..17
Figure 12. Different Aspects of a WRT55AG Wireless Router [From Ref. 12].17
Figure 13. Connection Diagram of RS-232 Interface to the Ship’s LAN using the

Vlinx RS-232 to Ethernet Adapter [From Ref. 13]..18
Figure 14. Web Page hosted by the Vlinx Box displays the Assigned IP Address...........19
Figure 15. Vlinx Configuration Web Page that is used to configure the Ethernet

Interface. ..20
Figure 16. The Vlinx Configuration Web Page that is used to configure the RS-232

Interface. ..21
Figure 17. Installation of the Tomcat Web Server. ...22
Figure 18. Launching the Tomcat Web Server from the Startup Menu............................23
Figure 19. Tomcat GUI for Launching the Web Server..23
Figure 20. Changing the Working Path to C:\virtual_ship..24
Figure 21. The Virtual Ship Folder. ..24
Figure 22. The Electrical Pump, and the Pump Controller. ..26
Figure 23. The Opening Valve and the Valve Controller. ..27
Figure 24. Circuit Diagram of the Pump and Valve Controllers.......................................28
Figure 25. Honneywell Precision Pressure Transducer Connected to a Vlinx Ethernet

Adapter...30
Figure 26. An ISI Pressure Sensor is connected to a PoE Switch.....................................31
Figure 27. The ISI Sensor interfaces with the Ship’s LAN via a Netgear PoE Switch. ...32
Figure 29. The ISI Sensor has a Static IP Address of 192.168.2.90, and has the

3COM’s IP Address as Its Gateway to the Ship’s LAN..................................33
Figure 30. ISI Sensor’s Static IP Address and MAC Address are manually added to

the Router’s DHCP Client Table. ..34

 xii

Figure 31. The Sensor Head of a Crystal XP2 Portable Pressure Calibrator (PPC) is
powered by three AA Batteries and can communicate over an RS-232
Interface [From Ref 8]. ..35

Figure 32. An Omega Analog Pressure Sensor [Ref 10]. ...36
Figure 33. Top, Bottom, and Side View of the Custom-made Zigbee Wireless Sensor

[14]. ..37
Figure 34. A Zigbee Base Station [14]..37
Figure 35. Communication between different Software Components in the Automatic

Web-based Calibration System..40
Figure 36. Main Web Page of the Virtual Ship’s Automatic Web-based Sensor

Calibration System...47
Figure 37. ISI Sensor’s Calibration Page. ...48
Figure 38. Html Code uses “param” to interface with Sensor Applet.50
Figure 39. Examples of Applet Interfaces with an HTML file to Get Sensor Specific

Information. ...50
Figure 40. The GUI of the Sensor Applet. ..51
Figure 41. Block Diagram demonstrates Data Flow between the Four Labview

Modules..53
Figure 42. The Tree Diagram shows different subVIs that are used to implement the

four main functions of the subVI SensorServerFinal.vi.53
Figure 43. Front Panel of the SubVI SensorServerFinal.vi...54
Figure 44. Block Diagram of the SubVI SensorServerFinal.vi...55
Figure 45. The UDP Transmit and Receive Loops of the External Communication

Module. ..56
Figure 46. The Tx String Construction Thread of the External Communication

Module. ..56
Figure 47. Four Sensor Monitoring Threads used on a Virtual Ship.58
Figure 48. Front Panel of the SubVI Vlink_Honeywell.vi. ..59
Figure 49. Block Diagram of the SubVI Vlink_Honeywell.vi. ..59
Figure 50. Front Panel of the SubVI ISI_reading.vi. ..60
Figure 51. Block Diagram of the SubVI ISI_reading.vi. ..60
Figure 52. Front Panel of the SubVI Vlink_StandardSensor.vi.61
Figure 53. Block Diagram of the SubVI Vlink_StandardSensor.vi.62
Figure 54. Block Diagram of the Command Handler Thread in the subVI

SensorServerFinal.vi..64
Figure 55. Front Panel of the subVI CalibrateSensor.vi. ..65
Figure 56. Block Diagram of the subVI CalibrateSensor.vi. ..65
Figure 57. Front Panel of the subVI OutputWordToPort.vi..66
Figure 58. Block Diagram of of the subVI OutputWordToPort.vi.67
Figure 59. Device Manager GUI shows the Physical Address of the Parallel Port on

the Calibrating Computer...67
Figure 60. Pin Diagram of the Parallel Port. ...68
Figure 61. Front Panel of the subVI PumpTo.vi..69
. 69
Figure 62. Block Diagram of the subVI PumpTo.vi..70

 xiii

Figure 63. Front Panel of the subVI NewCalConst.vi...72
Figure 64. Block Diagram of the subVI NewCalConst.vi. ..73
Figure 65. Front Panel of the subVI SaveCalConst.vi. ...73
Figure 66. Block Diagram of the subVI SaveCalConst.vi. ...73

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF TABLES

Table 1. Required System Environment Variables for Java Servlet Development.25
Table 2. Payload Data Format of the POST Requests from SensorApplet.class to

SensorServlet.class...41
Table 3. Table of Command Definitions. ..42
Table 4. Payload Data Format of the Responses from SensorServlet.class to

SensorApplet.class. ..42
Table 5. Different Meaning of [Reading 1][Reading 2] for Different Values of

Message..43
Table 6. The Payload Data Format of the UDP packets sent to the Calibrating

Computer..44
Table 7. The Payload Data Format of the UDP Packets sent to the Web Server

Computer during the Normal Operation. ...45
Table 8. The Payload Data Format of the UDP Packets sent to the Web Server

Computer after Sensor Calibration of Sensor 1 is completed..........................45
Table 9. Summary of Query Strings and Responses from each Sensor Used on the

Virtual Ship..46
Table 10. Format of the Data Packet sent to the NCAP Server for Authentication.........63
Table 11. Format of the Data Packet from the NCAP TCP Server.63
Table 12. Output Words used to Control the Pump and the Opening Valve...................68
Table 13. Number of Data Points for each Reading Range. ..71
Table 14. The Detail Format of the UDP Packet’s Payload that is used to send

Calibration Constants of Sensor 1 to the Web Server Computer.....................74

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

LIST OF ACRONYMS AND ABBREVIATIONS

ASCII American Standard Code for Information Interchange

CBM Condition Based Maintenance

CPU Central Processing Unit

DHCP Dynamic Host Configuration Protocol

DS Data Socket

ERP Enterprise Resource Planning

HM&E Hull, Mechanical and Electrical

HMI Human Machine Interface

HTTP Hypertext Transfer Protocol

I/O Input/Output

ICAS Integrated Condition Assessment System

IEEE International Electrical and Electronic Engineering

IIS Internet Information Server

ISI Industrial Sensor Instrument

ISIC Immediate Superior In Charge

LAN Local Area Network

LCD Liquid Crystal Display

MAC Medium Access Control

MCS Machinery Control Systems

NCAP Network Capable Application Processor

NEMIAS Navy Enterprise Maintenance Automated Information System

NPS Naval Postgraduate School

PC Personal Computer

PPC Portable Pressure Calibrator

PPT Precise Pressure Transducer

RCM Reliability Centered Maintenance

RS-232 Recommended Standard 232

SubVI Subsidiary Virtual Instrument

TCP Transport Control Protocol

UDP User Datagram Protocol

 xviii

URL Uniform Resource Locator

VI Virtual Instrument

VPN Virtual Private Network

WAN Wide Area Network

W-LION Wireless Input/Output Node

 xix

EXECUTIVE SUMMARY

This thesis reports on the development of an automatic web-based sensor

calibration system to implement a new calibration concept. This new sensor calibration

system was developed with four objectives. First is to reduce the personnel requirement

by at least 50 percent. Second is to reduce the calibration time as much as 75 percent

compared to the current calibration procedure used by the US Navy. Third is to further

automate the calibration process, and provide a user friendly, web-based GUI to guide an

operator through the calibration process. Fourth is to take advantage of the web

technologies to allow operators to calibrate any selected shipboard sensor from anywhere

on the world-wide-web.

The automatic web-based calibration system is implemented by using the

Commercial-off-the-Shelf (COTS) products such as the 3COM router, Netgear PoE

switch, Vlinx RS-232 to Ethernet adaptor, and Dell desktop computers. The Vlinx RS-

232 to Ethernet adaptor is used to interface sensors with the ship’s LAN. The two

personal computers are used to interface with remote users (the web server computer) and

to automate the calibration process (the calibrating computer). Extensive use of Labview

code on the calibrating computer allows it to collect sensor readings from the shipboard

LAN, forward the reading to the web server computer, receive calibration commands

from the web server computer and execute the calibration process as requested by the

user. The web server computer is configured with the Tomcat web server to host the

sensor calibration web pages. The calibration capabilities of these web pages are

powered by the Java applets and servlets located on the web server computer. These Java

codes allow the web server computer to forward sensor readings to an operator and send

calibration commands from operators to the calibrating computer. The calibration

process is executed automatically by the calibrating computer. No manual intervention is

required by operators. The process, therefore, takes much less time than the current

calibration process.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 xxi

ACKNOWLEDGMENTS

The author would like to acknowledge the financial support of Corona Division,

Naval Surface Warfare Center (NSWC), for allowing the purchase of equipment used in

this thesis, and to thank the following people for technical and moral support during the

course of this thesis effort: Prof. Xiaoping Yun and James Calusdian at NPS, Randy

Rupnow and Hal Glick at NSWC Corona.

The author also would like to thank Professor Xiaoping Yun for all his guidance

during the thesis. His assistance and advices had helped to overcome challenges along

the way. It has been a great learning experience to discover new techniques and solutions

to implement this new calibration concept. A lot of valuable skills and knowledge have

been gained. Thank you, sir, for this excellent thesis opportunity.

The author also would like to acknowledge James Calusdian for designing and

constructing the pressure pipe system on the virtual ship, solenoid controlling circuits,

and providing necessary resources to accomplish the thesis work. His strong knowledge

of engineering principles and circuit design quickly turned ideas into reality. His

assistance was crucial to the successful completion of this thesis.

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

In a modern DDG, there are approximately 3,742 hull, mechanical, and electrical

(HM&E) sensors to monitor and control systems on the ship. Over times, the readings

from these sensors tend to deviate from the actual reading and therefore they need

periodic calibration. Most of the sensors are pressure and temperature sensors, switches

or gauges. Of these, 1,189 are independent visual types of sensors and 1,480 are integral

parts of shipboard Machinery Control Systems (MCS), which can only be read at system

consoles located far from the original sensor location [1].

Calibrating all these sensors would require thousands of man-hours from

specialized technicians to collect and analyze data from sensors. As an example, at least

two technicians are required to calibrate a sensor. The calibration process takes at least

30 minutes to one hour for each sensor. The man-hours and system down time increase

dramatically as the complexity of the sensor is increased [1].

With the emphasis being placed on reducing crew size, more sensors are needed

for automated systems to reduce the man-hours lost. This increase in number of sensors

and reduction in number of maintaining personnel present a major challenge in keeping

shipboard sensor calibrated. [2]. A new calibration process or approach is needed to

overcome this challenge.

B. CURRENT CALIBRATION PROCESS

The current sensor calibration process is labor intensive, time consuming and

requires at least two technicians to complete the task. The displays of the sensor being

calibrated and the reference sensor are physically separated. Two technicians are

required to read the displays at the two separate locations. Several readings of the two

sensors are collected using hand held radio communication between the two technicians.

The two sets of data are then plotted for comparison, and calibration constants are

derived from the plot. The calibration constants are then applied on the sensor’s signal

 2

conditioner. The calibration process repeats until the calibrated sensor and the standard

sensor display readings within a specified tolerance.

C. OBJECTIVES AND APPROACH

This research work was conducted with four objectives. First is to reduce the

personnel requirement by at least 50 percent. Second is to reduce the calibration time as

much as 75 percent compared to the current calibration procedure used by the US Navy.

Third is to further automate the calibration process, and provide a user friendly, web-

based GUI to guide an operator through the calibration process. Fourth is to take

advantage of the web technologies to allow operators to calibrate any selected shipboard

sensor from anywhere on the world-wide-web.

To achieve the objectives listed above, the current computer and networking

technologies were used to maximize automation in the calibration process and allow an

operator to remotely calibrate a shipboard sensor. Available commercial off-the shelf

(COTS) components were also used to push sensor readings on the ship’s LAN where

they were collected by a computer for calibration. This computer also controlled an

electrical pump and an opening valve to adjust the pressure inside the pipe system during

the calibration process. A second computer was used to host a web site to interface with

the operator from a remote location or from within the ship. The two computers

communicate with one another via the ship’s LAN. The system was designed to allow an

operator to calibrate a sensor by simply making a few clicks on a web page.

D. RELATED WORK

Previous work on developing a close-loop sensor calibration system was

conducted by two former students at NPS, Steven Joseph Perchalski [3] and Eusébio

Pedro da Silva [4]. The guidance and technical support of this work are provided by Mr.

Randy Rupnow at NAVSEA Corona, and Professor Xiaoping Yun at NPS. Their work

consisted of a number of Labview programs communicating with sensors via wireless

Ethernet, a RS-232 interface or a Bluetooth interface. These Labview programs collected

sensor readings and automatically computed the new calibration constants using a least

 3

squares fitting method. This was a closed-loop process that wirelessly calibrated

shipboard sensors and reduced the number of personnel and time required to complete the

task.

E. BENEFIT OF CONCEPT TO THE NAVY

This research work can potentially be beneficial to the maintenance of US Navy

Ships. By maximizing automation and providing a simple user interface, more sensors

can be calibrated with much less time and man-power. The user interface is so simple

that average sailors can learn to use it in a short period of time. Thus, more sailors can be

trained to calibrate their ship’s sensors. Therefore, sensors can be calibrated more

frequently and will provide more accurate reading. The end result will be a reduction in

equipment failure due to sensor errors. This research demonstrates that remote and

automatic sensor calibration is achievable. It also shows that thousands of copper wires

connecting sensors to a control station can be replaced with a few Ethernet cables. This

will save significant space, weight and cost incurred by running sensor cables.

Networking also provides the same functionalities with even more redundant routes.

More redundancy would greatly increase a ship’s survivability.

F. THESIS OUTLINE

This first chapter is the introduction to the thesis, while the second chapter covers

the problem statement and proposed approaches. The third chapter concentrates on the

hardware components, and it discusses their configurations and functions. The fourth

chapter examines the software designed, and discusses the overall functionality and

implementation details. The fifth chapter presents the results that were found and

discusses what worked and what failed. Finally, the sixth chapter has the conclusions and

recommendation for future research. This includes what was accomplished by this thesis

and any future work that may be needed. The appendix contains the Java codes that were

designed and used for this thesis.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. OVERVIEW OF RESEARCH GOALS AND CONTRIBUTIONS

A. PROBLEM STATEMENT AND RESEARCH GOALS

As stated in the introduction, there is a need for a new process to calibrate

sensors. The plan was to develop a new process that achieves the following: First is to

reduce the personnel requirement by at least 50 percent. Second is to reduce the

calibration time as much as 75 percent compared to the current calibration procedure

used by the US Navy. Third is to further automate the calibration process, and provide a

user friendly, web-based GUI to guide an operator through the calibration process.

Fourth is to take advantage of the web technologies to allow operators to calibrate any

selected shipboard sensor from anywhere on the world-wide-web. This would allow

sensors to be calibrated while the ship is away from her homeport. The approach was to

use the web browser to remotely initiate an automatic calibration process on a ship. The

goals were to be achieved while following these constraints: the use of current

commercial-off-the-shelf (COTS) networking technology, which can be easily added to

new ship construction and could be retro-fitted onto older ships. In Figure 1, analog

readings from analog sensors are sampled and stuffed into the TCP packets by the

Network Capable Application Processors (NCAPs). These packets are transmitted

wirelessly to a wireless gateway to the ship’s LAN. Therefore, sensor readings can be

read by interfacing with the ship’s LAN.

 6

Figure 1. Diagram of a Ship’s Network using Wireless NCAP and Gateway [From
Ref. 1].

B. OVERVIEW OF CONTRIBUTIONS

1. Reduce Personnel Requirement by at least 50 Percent

The proposed approach reduces the personnel needed from two or more to one by

displaying the target sensor reading and the standard sensor reading on the same screen.

This removes the need for an additional person needed to read the data from the remote

display. As shown in Figure 2, a technician can remotely initiate an automatic sensor

calibration process by clicking on the “Calibrate” command button. With multiple

automatic calibration systems set up on a ship, a single technician can remotely calibrate

multiple sensors on different spaces in a ship or even on different ships simultaneously.

 7

Figure 2. GUI of a Web-based Automatic Calibration System.

2. Reduce Calibration Time by 75 Percent

To achieve the goal of reducing time required, the plan is to make it easier to take

measurements and change the calibration constants. All sensor readings are pushed on

the ship’s LAN using Power-Over-Ethernet (PoE), NCAP, or Vlinx RS-232-to-Ethernet

adapter. The calibrating computer collects sensors reading through the ship’s LAN, uses

an electrical pump to control the pressure on the calibrating sensor, collects pressure data

points, runs the calibration algorithm, and applies calibrating constants to the sensor. The

whole process is performed by the calibrating computer. The technician, no longer needs

to use the hand pump to apply different pressure on the sensors, nor calculating and

applying the calibrating constants manually.

 8

3. Enhance User-friendly Interface

One important factor to reduce time and required personnel for a calibration

process is to design a user friendly interface that requires minimal input from the

technician, and provides guidance throughout the calibration process. Anyone who has

used a web browser such as Internet Explorer would be able to get a sensor calibrated

using this new calibration system. Figure 3 shows the diagram of a ship’s sensor network

displayed on a web browser. By clicking on the image of a sensor, a new page is

displayed that allows the technician to calibrate the selected sensor, as shown in Figure 2.

To start calibration, the technician will only need to click on the Calibrate button on the

upper left of the strip chart.

Figure 3. Diagram of a Ship’s Sensor Network Displayed on a Web Browser.

 9

4. Automatic and Remote Calibration

With the new calibration process, the technician only needs to click one button

(Calibrate button) as shown in Figure 2. The automatic calibration process will, then, be

initiated by a computer. The computer will control the electrical pump and open the

valve to bring the pressure to the desired point. It, then, collects both the readings of the

target sensor and the standard sensor over the ship’s LAN. When enough data points are

collected, the computer performs the calibration algorithm and sends the calibration

constants to the technician via the ship’s network and the internet. During the whole

process, the reading of the calibrating sensor and the standard sensor are displayed in the

strip chart format on the technician’s computer. This removes the need to have an

additional person needed to read the data from the remote display or use the hand pump

to obtain the desired pressure during the data collection process.

C. SUMMARY

In summary the research goal is to demonstrate that an automatic web-based

sensor calibration process can be remotely initiated through the internet by a technician

using a web browser, and achieve at least 50% reduction in personnel and 75% reduction

in calibrating time. These were accomplished by using current networking technology

offered by commercial-off-the-shelf (COTS) products. By using the computer, electrical

pump, ship’s LAN, and the internet, the calibration process can be automated and

initiated remotely with a click of a button. In order to prove and test the theory, a virtual

ship was set up in the lab by connecting different sensors to pressurized pipes. The

research focuses on pressure sensors and uses the portable pressure calibrator (PPC) as

the standard sensor. The next chapter examines the hardware that was used in the thesis.

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

III. HARDWARE DESCRIPTION AND DISCUSSION

A. INTRODUCTION TO HARDWARE

This chapter discusses the different types of hardware used in this research.

Among these hardware are the 3eTI NCAP, the 3eTI Gateway, the Crystal XP2 Digital

Test Gauge (PPC), the calibrating computer, the web server computer, Vlinx RS232-to-

Ethernet adapters, Omega pressure sensor, Honeywell smart sensor, ISI sensor (the blue

sensor) and the networking gears used to implement the ship’s LAN (a 3COM router, a

Linksys router and a Netgear PoE switch). Figure 4 shows the partial implementation of a

virtual ship. The four sensors shown from left to right in Figure 4 are the ISI sensor, the

Honeywell Precision Pressure Transducer (PPT), the Zigbee sensor and the Omega

analog sensor.

Figure 4. Connection of Pressure Sensors to the Pressurized Pipe System on a

Virtual Ship.

 12

B. SHIPBOARD NETWORK

The ship’s LAN is implemented using a combination of a 3COM router and a

Linksys wireless router to provide wired and wireless LAN access to sensors and other

network clients, as shown in Figure 5. The 3COM router is also connected to a Netgear

switch to provide PoE interfaces to the ISI sensor. The green Vlinx RS232-to-Ethernet

adapters are used to convert an RS-232 interfaces to LAN interfaces. For analog sensors,

the NCAP I/O box is used to insert sensors’ analog readings to TCP packets and send

them to a destination via the ship’s LAN. These interface conversions allows the

calibrating computer to communicate with all shipboard sensors via a single Ethernet

interface.

Figure 5. Diagram of a Ship’s Integrated Sensor Network.

 13

1. 3COM Router

a. Description

The brain of the ship’s LAN is the 3COM router. It is equipped with a

firewall and other security measures to ensure a secured data exchange between the

ship’s LAN and the WAN. It also assigns an IP address to every network interface such

as the Vlinx RS232-to-Ethernet adapter, the ISI sensor, the NCAP box or any computer

connected to the ship’s LAN. It has four LAN ports and one WAN port. The WAN port

of the 3COM router is connected to the school network and is configured with the static

IP address of 205.155.65.71. The LAN ports are connected to the sensors on the virtual

ship. As more sensors are added to the system, there will be a demand for a higher

number of LAN ports. More LAN ports can be added by connecting one of the LAN

ports to a port on another switch or hub, as shown in Figures 6-7.

Figure 6. The Virtual Ship’s LAN is made of a 3COM Router, a Netgear Switch,

and a Linksys Wireless Router.

 14

Figure 7. Add PoE and LAN to the Virtual Ship’s LAN by Connecting the Router’s

LAN port to the Netgear Switch’s non-PoE LAN port.

b. Configuration

The 3COM router is configured for DHCP operation with the IP address

of 192.168.2.1. The router’s different LAN configuration tools can be accessed by typing

http://192.168.2.1 into the URL box of a web browser, as shown in Figures 8-10. For

easier configuration, a client (sensor, Vlinx box, or a computer) should be also configured

with DHCP when it is first connected to the 3COM router. DHCP configuration on both

the 3COM router and the client would allow the router to assign an IP address to the

client automatically. Figure 8 shows all LAN clients that have been assigned a DHCP

address. To keep these IP address assignments permanent, one only need to select the

corresponding box in the Fixed Association column of the table. If the client does not

support DHCP operation, then its IP address and MAC address must be added manually

to the 3COM router’s client address table.

 15

Figure 8. IP Addresses assigned to Each Network Interface by the 3COM Router.

The WAN port of the 3COM router is connected to the school’s network

via a static IP address of 205.155.65.71. Figure 9 shows the Internet Settings utility is

used to configure the 3COM router with a static IP address. This IP address is also used

by the technician to access the automatic web-based sensor calibration system.

Figure 9. Configuring a 3COM Router with a Static IP Address using a Web

Browser.

 16

The 3COM router also serves as the firewall that filters out data traffic

between the ship’s LAN and the WAN. The firewall is configured to only allow

bidirectional traffic on port 80, as shown in Figure 10. This would allow technicians to

access the web site (located on a web server computer, behind the firewall) to calibrate

the sensor. Figure 10 also shows that a FTP port is configured on port 21 to allow images

from the D-link web camera to be saved on the web server computer.

Figure 10. Configuring HTTP Server Port on the Firewall of the 3COM Router.

2. NETGEAR PoE Switch

The Netgear switch, as shown in Figure 11, is used to provide Power-over-

Ethernet (PoE) for the ISI sensor and to add additional LAN ports to the ship’s LAN. It

has four non-PoE LAN ports, and four PoE LAN ports. One non-PoE port is used to

connect to the 3COM router as shown in Figure 5 and Figure 7. A similar type of

connection can be repeated to add more ports to the ship’s LAN, as the ship’s LAN

grows.

 17

Figure 11. A Netgear PoE Switch is used to provide PoE to sensors and add more
Ethernet ports to the virtual ship’s LAN.

3. Linksys Wireless Router

A WRT55AG Linksys wireless router, as shown in Figure 12, is used to provide

wireless access to the ship’s LAN. It also adds three more ports to the ship’s network. In

this research, it is only used as a wireless access point. The WRT55AG Linksys Wireless

Router has four wired LAN ports and one wired WAN port. The WAN port is left

unconnected. One of the LAN ports is connected to another LAN port on the 3COM

router. This would add three additional LAN ports and a wireless access capability to the

ship’s LAN.

Figure 12. Different Aspects of a WRT55AG Wireless Router [From Ref. 12].

 18

C. VLINX RS232-TO-ETHERNET ADAPTER

1. Description

The PPT or the PPC communicates through a RS232 interface. In order to

integrate these sensors into the ship’s LAN, one Vlinx RS232-to-ethernet adapter is used

for each sensor. The Vlinx RS232-to-ethernet adapter converts a RS232 interface of a

sensor into an Ethernet interface. Figure 13 shows the connection of a serial device, such

as the PPT or PPC, to a LAN.

Figure 13. Connection Diagram of RS-232 Interface to the Ship’s LAN using the

Vlinx RS-232 to Ethernet Adapter [From Ref. 13].

2. Configuration

Inside the Vlinx RS232-to-ethernet adapter is an embedded computer that hosts

an embedded web server and TCP/IP or UDP server. This Vlinx RS232-to-ethernet

adapter is preconfigured with DHCP operation, which allows it to automatically get the

assigned IP address from the 3COM router. In this research, the Vlinx RS232-to-ethernet

adapter used with the PPC is assigned with an IP address of 192.168.2.98. The web

pages hosted by the Vlinx RS232-to-ethernet adapter can be accessed by entering this IP

address in the URL box of a web browser, as shown in Figures 14-16. From this page the

 19

Vlinx RS232-to-ethernet adapter can be configured to send data on the network using

UDP or TCP/IP protocol and the port number on which the data packets are sent on. This

web page can also be used to configure the baud rate on the RS-232 interface of the

adapter. As shown in Figure 15, the Ethernet interface of the adapter is configured to

communicate over port 4000 using TCP/IP protocol. The RS-232 interface is configured

with a baud rate of 9600 bps, 8 data bits, 1 stop bit and no parity, as shown in Figure 16.

Figure 14. Web Page hosted by the Vlinx Box displays the Assigned IP Address.

 20

Figure 15. Vlinx Configuration Web Page that is used to configure the Ethernet

Interface.

 21

Figure 16. The Vlinx Configuration Web Page that is used to configure the RS-232

Interface.

D. WEB SERVER COMPUTER

1. Description

The web server computer is a Dell Optiplex 260 that is connected to the 3COM

router via a LAN port, as shown in Figure 5. It is loaded with different software and web

pages to provide a user friendly interface to the automatic web-based sensor calibration

system. The software consists of Tomcat web server for window 6.0.13, Java

Development Kit 1.5.0, Java applets and servlets. The Tomcat web server software can

be downloaded at http://tomcat.apache.org.

2. Configure the Tomcat Web Server

After being downloaded, the Tomcat web server is installed in the folder

C:\Webserver\ Apache Software Foundation\Tomcat 6.0, as shown in Figure 17. Once

completed, the Tomcat software can be launched by selecting “Configure Tomcat” or

 22

“Monitor Tomcat” program from the startup menu, as shown in Figure 18. After

launching the application, a GUI is popped up as shown in Figure 19. The server can be

started by clicking on the “Start” button on the lower left hand of the GUI. This would

display Tomcat’s default web page, which is located at the folder C:\WebServer\

ApacheSoftwareFoundation\Tomcat_6_0\webapps\ ROOT. In order to for the web server

to display the virtual ship’s web pages, the working path for the server is changed to the

folder C:\virtual_ship. This task is accomplished by clicking on the “Startup” tab of the

GUI and replacing the “Working Path” text box with C:\virtual_ship, as shown in Figure

20. Directory C:\virtual_ship is where all web pages designed for this research is located

at. The contents of this folder is shown in Figure 21. All Java applets are stored in

C:\virtual_ship\applet. All Java servlets are saved at the folder C:\virtual_ship\WEB-

INF\classes. The interface between the applets and the servlets are detailed in file

web.xml located at the folder C:\virtual_ship\WEB-INF. More details on file web.xml

will be discussed in Chapter IV, Section B.

Figure 17. Installation of the Tomcat Web Server.

 23

Figure 18. Launching the Tomcat Web Server from the Startup Menu.

Figure 19. Tomcat GUI for Launching the Web Server.

 24

Figure 20. Changing the Working Path to C:\virtual_ship.

Figure 21. The Virtual Ship Folder.

 25

3. Set up the JAVA Development Environment

In this research, Sun’s Java Development Kit 1.5.0 (jdk.1.5.0) is used to develop

Java servlets and applets, which allow operators to communicate with the calibrating

computer via port 80. Java Development Kit 1.5.0 can be downloaded from Sun’s web

site at http://www.sun.com. In order to compile the Java servlet and applet codes, all

system environments variables listed in Table 1 are set with the corresponding values

following the installations of Java Development Kits 1.5.0 and Tomcat web server.

Environment Variables Setting Values

CATALINA_HOME C:\Inetpub\Tomcat

CLASSPATH C:\Inetpub\Tomcat\lib\servlet-api.jar

JAVA_HOME C:\Program Files\Java\jdk1.5.0

PATH C:\Program Files\Java\jdk1.5.0\bin\;C:\Inetpub\Tomcat\bin

Table 1. Required System Environment Variables for Java Servlet Development.

E. CALIBRATING COMPUTER

The calibrating computer is a Dell Optiplex 260 that is connected to the 3COM

router via a LAN port, as shown in Figure 5. It also interfaces with the pump and valve

controller on the parallel port (LP1). In this research, the calibrating computer is also

used as a Labview software developing computer. It is installed with Labview 6.1

software development package, purchased from National Instrument. If Labview 6.1 is

not installed, a Labview 6.1 run-time engine must be installed in order to run the Labview

software developed on another computer. The Labview 6.1 run-time engine can be

downloaded from National Instrument web site, at http://www.ni.com.

 26

F. ELECTRIC PUMP, OPENING VALVE, AND CONTROLLERS

An electrical pump and an opening valve, as shown in Figures 22-23, are used to

control the air pressure applied on the sensor during the calibration process. The pump is

used to increase the air pressure, while the opening valve is used to decrease the air

pressure in the pipe system. The pump and the opening valve are controlled by separate

controlling circuits, as shown in Figure 24. The controlling circuits are input with signals

from the parallel port of the calibrating computer. These signals are amplified and used

to turn ON/OFF power supply to the electrical pump or the opening valve.

Figure 22. The Electrical Pump, and the Pump Controller.

 27

Figure 23. The Opening Valve and the Valve Controller.

 28

Figure 24. Circuit Diagram of the Pump and Valve Controllers.

G. SENSORS

The virtual ship integrates five different types of sensors: the HonneyWell PPT,

the ISI sensor, the PPC, the analog sensor and the Zigbee sensor. Each offers unique

advantages and disadvantages. They, however, can co-exist in the same shipboard

environment. This lab setup demonstrates the feasibility of using different types of

sensors in a sensor network. All sensors except the PPC are used as the target sensor for

calibration. The PPC is used as a standard sensor to calibrate the target sensors.

 29

1. Honeywell Precision Pressure Transducer (PPT)

Honeywell Precision Transducer, as shown in Figure 26, is a highly accurate

sensor that can provide readings in both digital and analog form. In digital mode, the

PPT can interface with either RS-232 or RS-485 port. In this research, the PPT operates

in digital mode. Its RS-232 port is configured with the following settings:

• Baud Rate = 9600

• Start Bits = 1

• Data Bits = 8

• Stop Bits = 1

• Parity = None

To collect the sensor reading from the PPT, the query string “*00P1” is sent to

the PPT. The substring “00” is the default address of the sensor, and the substring ”P1”

is the command requesting a single pressure reading in ASCII format. The PPT

responses with a sensor reading for each queried command. The responses from the PPT

have the format of “01CP=XX.XX”, where XX.XX is the sensor reading in PSI. The

PPT is integrated with the ship’s LAN via a Vlink RS232-to-ethernet adaptor, as shown

in figure 25. This allows the calibrating computer to communicate with the PPT across

the ship’s LAN.

 30

Figure 25. Honneywell Precision Pressure Transducer Connected to a Vlinx Ethernet

Adapter.

2. ISI Pressure Sensor

The ISI pressure sensor is a single-cable, Ethernet-ready sensor that does not

require a separate power source, as shown in Figure 26. The sensor is connected to the

ship’s LAN by a Category 5 Ethernet cable via the PoE port of the Netgear switch. The

power sources from PoE ports are IEEE 802.3af compliant, and provide adequate power

for the ISI sensor’s operations.

 31

Figure 26. An ISI Pressure Sensor is connected to a PoE Switch.

 32

Figure 27. The ISI Sensor interfaces with the Ship’s LAN via a Netgear PoE Switch.

The ISI sensor does not support DHCP operation, therefore it is assigned with a

static IP address. In preparation for the static IP address assignment, the PC is connected

to the non-PoE port, while the ISI sensor is connected to the PoE port of the Netgear

switch. Another non-PoE port of the Netgear switch is also connected to the 3COM

router, as shown in Figure 27. The ISI sensor’s static IP address assignment is started by

issuing the command arp –s 192.168.2.90 00:50:C2:46:81:01 192.168.2.82 on the

command console. At this point, the web pages hosted by the ISI sensor can be access by

entering 192.168.2.90 in the URL box of a web browser, as shown in Figure 28.

Figure 28. Main Web Page Hosted by the ISI Sensor.

 33

In order for the sensor reading sent by the ISI sensor to reach other clients in the

network, server’s gateway on the ISI is configured with the 3COM router’s IP address.

This task is accomplished by clicking on the “Inpoint Setup” button on the lower left

corner of Figure 28, followed by clicking on the “Servers” tab on the lower left corner of

the new window. Once the “server” tab is active, as shown in Figure 29, the 3COM

router’s address (102.168.2.1) is entered on the Gateway text box. The “Apply” button is

then selected.

Figure 29. The ISI Sensor has a Static IP Address of 192.168.2.90, and has the

3COM’s IP Address as Its Gateway to the Ship’s LAN.

At this point, the ISI sensor can see the 3COM router, but the router does not see

the ISI sensor as a client of the ship’s LAN. To register the ISI sensor’s static IP address

with the 3COM router, its MAC address and static IP address is manually entered on the

3COM router’s routing table. Another browser is opened with “192.168.2.1” entered in

the URL to access 3COM router’s configuration tools. After logging in, the router’s

client table is accessed by clicking on the “LAN Settings” tab on the left, followed by

 34

clicking on the “DHCP Clients” tab. The ISI sensor’s static IP address and the MAC

address can now be added to the DHCP Clients Table, as shown in Figure 30.

Figure 30. ISI Sensor’s Static IP Address and MAC Address are manually added to

the Router’s DHCP Client Table.

With the ISI sensor connected to the ship’s LAN, the sensor’s reading can be

queried by typing “http://192.168.2.90/-$rdng” in the URL of a web browser. The sensor

replies back with the pressure reading in ASCII format. This same concept will be

exploited to develop software to communicate with the ISI sensor, in chapter IV. The ISI

sensor’s additional functions and capabilities can be found in [11].

3. Crystal XP2 Portable Pressure Calibrator (PPC)

The PPC is a highly accurate pressure sensor manufactured by Crystal

Engineering Corporation. The sensor is powered by three AA batteries (4.5 V), as shown

in Figure 31. The PPC requires very little power to operate. With three AA batteries, it

can operate continuously for two months [8]. The PPC displays pressure reading on the

LCD display and sends the reading out on the RS-232 port on the back of the sensor. The

RS-232 port is preconfigured with the following default setting:

 35

• Baud Rate = 9600

• Data Bits = 8

• Stop Bits = 1

• Parity = None

• Flow Control = None

The RS-232 port also allows the PPC to be configured remotely. A complete

description of the queried and configuration commands can be found in [9]. In this

research, the sensor reading can be queried by sending a query string “?P,U” to the

sensor over the RS-232 link. The PPC responses to the query string with a pressure

reading and a pressure unit in ASCII format. This concept can be further exploited by

developing software to communicate with the PPC automatically, as discussed in Chapter

IV. The PPC is integrated to the ship’s LAN using a Vlinx RS232-to-ethernet adapter in

the same manner as shown Figure 13. This allows the calibrating computer to

communicate with the PPC across the ship’s LAN.

 Figure 31. The Sensor Head of a Crystal XP2 Portable Pressure Calibrator
(PPC) is powered by three AA Batteries and can communicate over an RS-232

Interface [From Ref 8].

 36

4. Analog Sensor

The analog sensor, Figure 32, used in this thesis is the X205 4 to 20 mA pressure

transducer, manufactured by Omega. The sensor is connected to an NCAP (Network

Capable Application Processor), where the analog readings are digitized and sent over the

ship’s LAN to clients. The sensor reading can be retrieved by establishing a TCP

connection to the NCAP box with the IP address 192.168.2.97 and port 1501. Once a

TCP connection is granted by the TCP server on the NCAP, the sensor’s readings are sent

to the client periodically.

Figure 32. An Omega Analog Pressure Sensor [Ref 10].

5. Zigbee Sensor

The ZigBee sensor is a custom-made wireless pressure sensor utilizing Zigbee

technology and Commercial-off-the-Shelf components, as shown in Figure 33. ZigBee is

a wireless technology based on the IEEE 802.15.4 standard. It is intended for monitoring

and control applications that require low data rate and low power consumption. The

sensor transmits unprocessed data wirelessly to the base station (Figure 34) where the

data is processed and made available on the ship’s LAN [14].

 37

Figure 33. Top, Bottom, and Side View of the Custom-made Zigbee Wireless Sensor

[14].

Figure 34. A Zigbee Base Station [14].

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

IV. SOFTWARE

A. INTRODUCTION

The software can be classified into three main categories: HTML codes, Java

codes, and Labview codes. HTML codes and Java codes are hosted on the web server

computer, while the Labview codes are hosted on the calibrating computer. The codes

are developed using Microsoft Front Page, Sun’s Java Software Development Kits 1.5.0,

and National Instruments’ Labview 6.1. The whole operation of all developed codes can

be summarized in a diagram shown in Figure 35. When the sensor calibrating page is

accessed, Java applets are loaded and run on the operator’s computer to establish

communication with the Tomcat web server. The Java servlets located on the web server

computer will act as a data translator, converting and relaying data messages between the

applets and the calibrating computer. Labview codes are hosted on the calibrating

computer to communicate with the web server and execute commands requested by the

operator. This chapter discusses algorithms implemented by software, using the top-

down approach starting from the web pages, then the Java codes, and finally the Labview

codes. Only snapshots of important source codes are displayed or discussed. Complete

copies of the source codes, which are rather lengthy, can be found in the appendix.

 40

Figure 35. Communication between different Software Components in the Automatic
Web-based Calibration System.

B. COMMUNICATION BETWEEN COMPONENTS

A large portion of the software is developed to implement the bidirectional data

communication between the operator and the calibrating computer. This communication

link allows the operator to initiate the calibration process monitor the sensor readings in

real time. The data exchanges between the user and the calibrating computer are in

binary format, while the data exchanges between the calibrating computer and the sensors

are in ASCII format.

1. Communication between a Web Page and the Web Server Computer

When both the user and the virtual ship are located on two separate secured

networks, only port 80 is available for the user to initiate a bidirectional communication

channel with the web server computer. The problem is the operator’s web browser is also

communicating with the web server computer on port 80. A normal socket

communication on port 80 would not work. To overcome this problem, a Java applet is

 41

developed to send the POST requests from the client to the web server and wait for web

server’s response to the POST request before continuing.

a. Communication from an Applet to the Web Server

POST request are sent from two different applets: SensorApplet.class and

ImageApplet.class. POST request from the applet ImageApplet.class has only one type

of data request, which is the image from the web camera. The POST requests from the

applet SensorApplet, however, have different meanings, depending on what is filled in

the [Command] field of the requests. The data payload of POST request from the the

applet SensorApplet.class is arranged in the format shown in Table 2.

Data Format Command Sensor ID Min Reading Max Reading

Size in bytes 2 2 8 8

Data Type Unsigned Short Unsigned Short Double Double

Table 2. Payload Data Format of the POST Requests from SensorApplet.class to
SensorServlet.class.

Starting from left to right of Table 2, the request contains a command,

sensor ID, the lower bound, and upper bound of the pressure range supported by a sensor.

The [Command] field and the [Sensor ID] field, each is two-byte long. Each is

implemented by an unsigned short variable. The [Min Reading] field and the [Max

Reading] field, each is eight-byte long. Each is implemented by a double variable. There

are a total of eight different values that could be assigned to the [Command] field. The

complete definition of each command is listed in Tables 3.

 42

Commands Meaning
400 Request Sensor Reading of the Sensor with the Attached ID
401 Calibrate the Sensor with the Attached ID
402 Start Pump
403 Stop Pump
404 Open Valve
405 Close Valve
406 Reset Calibration Constants of Sensor with the Attached ID
407 Get Current Calibration Constants of Sensor of the given ID
408 Get Previous Calibration Constants of Sensor of the given ID

*Sensor ID = Each sensor has an ID, starting from 0
*Min/Max Reading = Min/Max reading of the reading range that a sensor
supports

Table 3. Table of Command Definitions.

b. Communication from the Web Server to an Applet

POST requests from the applets SensorApplet.class and ImageApplet.class

are responded by the servlets SensorServlet.class and ImageServlet.class, respectively.

The response from the ImageServlet.class is an image object, which is a live webcam

image of the virtual ship. The image file is saved on the web server computer by the IP

web camera. The responses from the SensorServlet.class contain data payloads arranged

in the format shown in Table 4.

Data Format Message 1 Reading 1 Message 2 Reading 2

Size in bytes 2 8 2 8

Data Type Unsigned Short Double Unsigned Short Double

Table 4. Payload Data Format of the Responses from SensorServlet.class to
SensorApplet.class.

 43

Each of the fields [Reading 1] and [Reading 2] has a different meaning

depend on the content of the [Message] field on its right. When the [Message] field is

equal to 300, the fields [Reading 1] and [Reading 2] are the sensor readings of the target

sensor and the standard sensor (PPC). When it is equal to 301 or 302, the fields [Reading

1] and [Reading 2] are the calibration constants of the target sensor, as shown in Table 5.

Message Meaning of [Reading 1] [Reading 2]

300 [Target Sensor’s Reading][Standard Sensor’s Reading]

301 [Current Slope][Current Offset] of Target Sensor

302 [Previous Slope][Previous Offset] of Target Sensor

Table 5. Different Meaning of [Reading 1][Reading 2] for Different Values of
Message.

2. Communication between the Web Server Computer and the
Calibrating Computer

Communication between the web server computer and the calibrating computer is

implemented using the UDP protocol. The web server computer only sends UDP packets

to the calibrating computer when it receives POST requests from SensorApplet.class. The

calibrating computer, however, periodically packs sensor readings from all sensors on the

virtual ship into a UDP packet and sends it to the web server. Normally, this type of

packet is ignored by the web server computer. It is only read by the servlet

SensorServlet.class when a POST request from the applet SensorApplet.class is received

by the web server.

a. Communication from the Web Server Computer to the
Calibrating Computer

When a POST request from the applet SensorApplet.class is received, the

servlet SensorServlet.class extracts the data content and examines the [command] field,

filters out unnecessary data field. The relevant data fields are then forwards to the

 44

calibrating computer in a UDP packet. Therefore, the UDP packet payloads for different

commands have different payload data formats, as shown in Table 6.

Command ID Format of the UDP Data Payload Packet Length

400 No Packet sent to the calibrating computer N/A

401 [Command][ID][Max Rreading][Min Reading] 20

402 [Command = Start Pump] 2

403 [Command = Stop Pump] 2

404 [Command = Open Valve] 2

405 [Command = Close Valve] 2

406 [Command = Reset Cal Const][ID] 4

407 [Command = Get Current Cal Const][ID] 4

408 [Command = Get Previous Cal Const][ID] 4

Table 6. The Payload Data Format of the UDP packets sent to the Calibrating
Computer.

b. Communication from the Calibrating Computer to the Web
Server Computer

Ten times per second, the calibrating computer packs sensor’s readings

from all sensors of the virtual ship into a UDP packet and sends it to the web server

computer. During normal operation, the data payload of the UDP packet has the same

data format as shown in Table 7. The [command] fields are filled with two-byte long

value of 300, followed by eight-byte long sensor readings. When a sensor calibration is

completed, one UDP packet with a different format is sent to the web server computer.

The data payload of this UDP packet is organized in a format as shown in Table 8.

 45

Data

Format

300 Sensor 1

Reading

300 Sensor 2

Reading

300 Sensor 3

Reading

300 Sensor 4

Reading

…

Size in

bytes

2 4 2 4 2 4 2 4 …

Table 7. The Payload Data Format of the UDP Packets sent to the Web Server
Computer during the Normal Operation.

Data

Format

301 Sensor

1’s Slope

300 Sensor 2

Reading

300 Sensor 3

Reading

301 Sensor 1

‘s Offset

…

Size in

bytes

2 4 2 4 2 4 2 4 …

Table 8. The Payload Data Format of the UDP Packets sent to the Web Server
Computer after Sensor Calibration of Sensor 1 is completed.

3. Communication between the Calibrating Computer and Sensors

The communication link between the calibrating computer and sensors is

bidirectional. It is, however, device specific. The query strings and response strings are

different from sensor to sensor. Therefore, different software components must be

developed for each sensor. The query string and response string for each sensor are listed

in Table 9. Table 9 also shows the data format of the payload and the communication

protocol used for data exchange with sensors.

 46

Sensor Query String Response String Data

Format

Protocol

Used

PPT *00P1 01CP= <Reading> ASCII TCP

PPC ?P,U <Reading> PSI ASCII TCP

ISI http://ip_address/-$rdng <Reading> ASCII HTTP

Table 9. Summary of Query Strings and Responses from each Sensor Used on the
Virtual Ship.

4. Communication from the Calibrating Computer to Controllers of the
Pump and the Valve

The calibrating computer interfaces with the controllers of the electrical pump and

the opening valve via its parallel port. Pin 2 and 3 of the parallel port are connected to

the controllers of the electrical pump and the opening valve, respectively. The

communication is only one way, from the calibrating computer to the controllers. The

data bit 0 and data bit 1 of the parallel port (pins 2-3) are independently toggled to control

the power to the pump and the opening valve.

C. CALIBRATION WEB PAGES

The main page of the virtual ship, Figure 36, is a diagram of a ship’s sensor

network. To calibrate a sensor, the technician first needs to click on the target sensor of

interest (ie. PPT, ISI sensor, or the analog sensor). The sensor calibration page is then

displayed on the browser. Each calibration web page has two embedded Java applets, as

shown in Figures 37. One applet displays the live webcam image of the virtual ship. The

other simultaneously displays sensor reading of the target sensor and the standard sensor

in digital and on a strip chart format. It also displays command buttons that allow

operator to initiate a calibration process, reset calibration result and control the pressure

applied on sensors.

 47

Figure 36. Main Web Page of the Virtual Ship’s Automatic Web-based Sensor
Calibration System.

 48

Figure 37. ISI Sensor’s Calibration Page.

D. JAVA CODES

1. Introduction

The Java code is stored on the web server computer. It can be classified into two

main categories: applet and servlet. The applet is downloaded and run on the client’s

computer when the web page is accessed. The servlet, however, does not run on its own.

It is only invoked by the web server to service POST requests from clients, and it runs on

 49

the web server computer. The servlets and the applets communicate with one another via

port 80, which is the only port that remains open for bidirectional communication

between the virtual ship’s LAN and the WAN.

2. Java Applets

When an operator accesses a sensor calibration page, two applets are downloaded

from the web server and run on the operator’s computer. The two applets are image

applet, and the sensor applet. The image applet displays the live images of the virtual

ship’s lab setup, and the sensor applet displays sensor reading in strip chart format. The

details of the source code are listed in files ImageApplet.java and SensorApplet.java of

the appendix.

a. Image Applet

The image applet functions as an image display of a web camera. The

image applet periodically sends in POST requests to the web server. When a POST

request is received, the web server invokes the image servlet to attach the image file to

the response of that POST request and send to the image applet. After receiving the

response, the image applet displays the received image on a web browser, as shown in

Figure 37.

b. Sensor Applet

The sensor applet works in a similar way as the image applet. There are

nine different commands and three different messages that are exchanged between the

calibrating computer and the web server. The commands are sent from the web server to

the calibrating computer, and the messages are sent in the reverse direction. At

initialization, the sensor applet interfaces with the target sensor’s web page (in HTML

format), to obtain the sensor specific information such as sensor ID, pressure reading

range, and size of the strip chart (Figures 38-39). Periodically, the sensor applet sends

POST request with command 400 (Table 2) to the web server to request the sensor

reading of the target sensor. The POST requests are serviced by the sensor servlet, which

attaches the target sensor readings and the standard sensor reading in the responses. The

 50

responses are then sent to the sensor applet. The sensor applet extracts the sensors’

readings from the responses and displays both readings on the same strip chart. The

target sensor readings are displayed in blue, and the standard sensor readings are

displayed in green, as shown in Figure 43. When a command button on the GUI is

clicked, a corresponding POST request with corresponding command sent to the web

server. The complete list of commands is shown in Table 2.

<applet codebase="applet"
code=SensorApplet.class id=SensorApplet width="680" height="250" >
 <param name=sensorID value="0">
 <param name=bufSize value="50">
 <param name=chartHeight value="200">
 <param name=xStep value="10">
 <param name=ySpace value="100">
 <param name=speed value="1">
 <param name=maxReading value="100">
 <param name="minReading" value="15">
 </applet>

Figure 38. Html Code uses “param” to interface with Sensor Applet.

param = getParameter(“sensorID”);
 if (param != null)
 sensorID = (short) Integer.parseInt(param);

 //=================================
 param = getParameter(“speed”);
 if (param != null)
 m_speed = Integer.parseInt(param);

 //=================================
 param = getParameter(“bufSize’);
 if (param != null) {
 try {
 bufSize = Integer.parseInt(param);
 } catch (NumberFormatException e){
 bufSize = 1;
 }
 } else {
 bufSize = 1;
 }

Figure 39. Examples of Applet Interfaces with an HTML file to Get Sensor Specific
Information.

 51

Figure 40. The GUI of the Sensor Applet.

3. Java Servlet

Java servlets are Java codes that are invoked by the web server to service the

POST and GET requests from clients. In this research, only POST requests are used.

Most of them are sent by the applets. There are two servlets: image servlet and sensor

servlet. The image servlet services POST requests from the image applet, and the sensor

servlet services POST requests from the sensor applet. The details of the source code are

listed in files ImageServlet.java and SensorServlet.java of the appendix.

a. Image Servlet

The implementation of the image servlet is fairly simple. When invoked

by the web server, the image servlet attaches the image file (saved by the web camera) to

the response to the POST request and send it to the image applet.

b. Sensor Servlet

The sensor servlet functions as a data translator, converting and relaying

data between the sensor applet and the calibrating computer. For each POST request

received from the applet (except command 400 – sensor reading), the content of the

request is extracted, filtered, repackaged into the UDP packet and sent to the calibrating

 52

computer, as shown in Table 6. Similarly, content of UDP package from the calibrating

computer is extracted, filtered, attached to the response to the POST and forwarded to the

sensor applet, as shown in Tables 7-8.

E. LABVIEW CODE

1. Description

The Labview code is developed to be run on the calibrating computer. It is

designed to perform four main functions. It has to maintain a bidirectional

communication with the web server computer, and collect readings from the sensors used

in the virtual ship. It also interprets commands from the servlets and invoke the

corresponding functional block to carry out the command execution. Finally, it calibrates

the target sensor using the automatic calibration process. The Labview code, therefore, is

divided into four modules: external communication module, data collector module,

command handler, and sensor calibration module. The four modules are integrated in a

multi-threaded Labview program called SensorServerFinal.vi, as shown in Figures 42-44.

As shown in Figure 41, the external communication module receives UDP packets from

the web server computer, and passes the packet’s payload to the command handler. The

command handler interprets the commands and invokes the appropriate software module

to execute the command. Figure 41 also shows that the outputs of the sensor calibration

module are the sensor calibration constants. These constants are used to adjust the sensor

readings before being sent to the web server by the external communication module.

 53

Figure 41. Block Diagram demonstrates Data Flow between the Four Labview
Modules.

Figure 42. The Tree Diagram shows different subVIs that are used to implement the

four main functions of the subVI SensorServerFinal.vi.

 54

Figure 43. Front Panel of the SubVI SensorServerFinal.vi.

 55

Figure 44. Block Diagram of the SubVI SensorServerFinal.vi.

 56

2. External Communication Module

The external communication module is designed to maintain a bidirectional

communication link with the servlets on the web server computer. The module is

implemented by three threads in the file SensorServerFinal.vi, as shown in Figures 45-46.

The first thread loads whatever is in the local variable Tx String into a UDP packet and

sends it to the web server computer’s IP address on port 1511. The second thread keeps

listening on port 1512 of the calibrating computer and copies the data payload of the

received UDP packet into the local variable Rx String, which will be processed by the

command handler module. The third thread constructs the local variable Tx String in the

same format as previously shown in Tables 7-8. The third thread also monitors the

button ResetCalConst, and resets all calibration constants when the button is pressed on

on the front panel of the Labview program SensorServerFinal.vi.

Figure 45. The UDP Transmit and Receive Loops of the External Communication

Module.

Figure 46. The Tx String Construction Thread of the External Communication

Module.

 57

3. Sensor Data Collector Module

The sensor data collector is designed to retrieve the sensor readings from all

sensors in the virtual ship, adjusts them using the most recent calibration constants and

stores them in a series of global variables Sensor #X (X is the sensor ID). Each sensor

reading is monitored by a separate thread in the Labview program SensorServerFinal.vi.

The virtual ship has totally four sensors. Therefore the sensor data collector module uses

four different threads. The advantage of this design is that the readings of each sensor are

not affected when one or more of the sensors in the virtual ship fail to response.

As shown in Figure 47, each thread of the sensor data collector performs similar

tasks. Each communicates with the sensor via a TCP connection. For this connection,

the sensor is the TCP server, and the sensor data collector is the TCP client. After

retrieving the sensor readings from the sensor, the sensor data collector adjusts the sensor

reading using the most recent calibration constants. As seen in Figure 41, these

calibration constants are the outputs of the sensor calibration module. The adjusted

sensors readings are stored in the global variables, so they can be accessed by lower level

subVIs, ie the sensor calibration module during the calibration process.

The sensor data collector has two modes of operation: running and testing mode.

In running mode, the sensor readings are retrieved from the sensor via a TCP connection.

In testing mode, the sensor readings are provided by the controls on the front panel. The

operation mode can be individually set for each sensor. As shown in Figure 43, the

buttons on the left side of the figure are used to toggle the operation mode for each

sensor. This feature is useful for testing and debugging during the development process.

 58

Figure 47. Four Sensor Monitoring Threads used on a Virtual Ship.

4. Sensor Interfaces

As discussed in Section IV.B.3, communication between the calibrating computer

and sensors is bidirectional and device specific. The query strings and reading responses

are different from sensor to sensor. A separate VI must be designed for each type of

sensor as shown below.

a. PPT Sensor Interface

The subVI Vlinx_Honeywell.vi, as shown in Figures 48-49, is designed to

retrieve sensor readings from the PPT. As stated in Section III.B.1, the PPT is integrated

to the ship’s LAN by a Vlinx RS232-to-Ethernet adapter. Therefore, the subVI

Vlink_Honeywell.vi is designed to establish a TCP connection to the Vlinx adaptor on

port 4000. On this connection, the Vlinx RS232-to-Ethernet adapter is the TCP server,

and the subVI Vlinx_Honeywell.vi is the client. After a TCP connection being

established, the query string “00P1” is sent to the sensor in ASCII format to request the

sensor reading. The response from the sensor has the format of “01CP=XX.XX”.

XX.XX is then parsed after the “=” sign to extract the sensor reading.

 59

Figure 48. Front Panel of the SubVI Vlink_Honeywell.vi.

Figure 49. Block Diagram of the SubVI Vlink_Honeywell.vi.

 60

b. ISI Sensor Interface

The subVI ISI_reading.vi, as shown in Figures 50-51, is designed to

retrieve sensor readings from the ISI sensor. The subVI is designed based on the concept

discussed in Section III.G.2. A data socket is used to establish a URL connection to the

web server hosted on the ISI sensor. When a URL connection is established, the string

“http://192.168.2.92/-$rdng” is sent over the URL connection. The ISI sensor responses

back with the sensor reading in ASCII format. This reading is then converted into a

double value and returned as an output of the subVI.

Figure 50. Front Panel of the SubVI ISI_reading.vi.

Figure 51. Block Diagram of the SubVI ISI_reading.vi.

 61

c. PPC Interface

Interfacing with the PPC is similar to interfacing with the PPT, since the

Vlinx RS232-to-ethernet adaptors are used to integrate both sensors to the ship’s LAN.

The only difference is the syntax of the command string and the response used to

communicate with the sensor. As shown in Figures 52-53, the subVI

Vlink_StandardSensor.vi is designed to implement the concept previously discussed in

Section III.G.3. After establishing a TCP/IP connection to the Vlinx RS232-to-ethernet

adapter on port 4000 of the IP address 192.168.2.98, a query string “?P,U” is sent to the

PPC. The subVI then waits for the response from the PPC. The response from the PPC

is returned will have the format of “XXX.XX PSI” in ASCII format. The sensor reading

is extracted out of the response string, converted to a double value and returned as an

output of the subVI.

Figure 52. Front Panel of the SubVI Vlink_StandardSensor.vi.

 62

Figure 53. Block Diagram of the SubVI Vlink_StandardSensor.vi.

d. Analog Sensor Interface

The subVI NCAPsensorReading.vi is designed to retrieve sensor readings

from the analog sensors connected to the NCAP box. As previously discussed in Section

III.G.4, the NCAP box converts the analog readings from all eight analog sensors to

digital readings and makes them available on the TCP/IP server. Unlike other sensors, all

data exchanges between the client and the NCAP server are in binary format. After

establishing a TCP/IP connection with the TCP/IP server on the NCAP box, a data packet

with the format, as shown in Table 10, is sent to the NCAP box for authentication:

 63

Format of Data Payload Unit ID Net Message

Size in byte 4 4

Data Type Unsigned Long Unsigned Long

Value 0 1

Table 10. Format of the Data Packet sent to the NCAP Server for Authentication.

When access is granted, the NCAP TCP server periodically sends readings

of all eight channels to subVI NCAPsensorRead.vi. The sensor readings arranged in the

format shown in Table 11.

Format

of Data

Payload

Packet

Length

Sensor

1

Sensor

2

Sensor

3

Sensor

4

Sensor

5

Sensor

6

Sensor

7

Sensor

8

Size in

byte

4 8 8 8 8 8 8 8 8

Data

Type

Unsigned

Long

Double Double Double Double Double Double Double Double

Table 11. Format of the Data Packet from the NCAP TCP Server.

5. Command Handler Module

The Command handler module is a thread in the subVI SensorServerFinal.vi, as

shown in Figure 54. It is designed to interpret the received commands and invoke

appropriate modules or subVIs to execute the commands. The data payload of the

received packet is organized in the format as shown in Table 6. The command handler

module uses the subVI UnpackRxString.vi to extract each field out of the data payload.

The command field (the first two bytes) is checked for the meaning before executing.

 64

Figure 54. Block Diagram of the Command Handler Thread in the subVI

SensorServerFinal.vi.

6. Sensor Calibration Module

Most of the function of the sensor calibration module is carried out by the subVI

CalibrateSensor.vi, as shown in Figures 55-56. It is invoked by the command handler

when the received command is 401 (Calibrate Sensor, Table 3). The subVI

CalibrateSensor.vi are input with the sensor ID, minimum reading, maximum reading,

and current calibration constants and returns the new calibration constants as the output.

The new calibration constants are then saved into the sensor data file and sent to the

operator. The sensor data files are currently decided to be stored in the folder C:\. The

file names will have the format of sensor#<sensor ID>data.txt. If the file does not exist

at run-time, a new file is created before storing new calibration constants.

 65

Figure 55. Front Panel of the subVI CalibrateSensor.vi.

Figure 56. Block Diagram of the subVI CalibrateSensor.vi.

 66

a. Interfacing with the Electrical Pump and the Opening Valve

The calibration module interfaces with the pump and the opening valve

via the parallel port of the calibrating computer. The parallel port interface is enabled by

the use of the subVI OutputWordToPort.vi, as shown in Figures 57-58. This subVI takes

two inputs: the physical address of the parallel port and the content of the byte to be

written to the port. On the calibration computer, the physical address of the parallel port

is 0x378 (hex). The physical address of the parallel port can be found in the device

manager, as shown in Figure 59. In Figure 60, the output on the parallel port has eight

data bits. Only bit 0 and bit 1 are used to control the pump and the opening valve. To

turn the pump ON, bit 0 is set LOW. To turn it OFF, bit 0 is set to HIGH. Similarly for

the valve, bit 1 is set LOW to open the valve, and HIGH to close it. The complete list of

output words in hexadecimal and their functions can be found in Table 12.

Figure 57. Front Panel of the subVI OutputWordToPort.vi.

 67

Figure 58. Block Diagram of of the subVI OutputWordToPort.vi.

Figure 59. Device Manager GUI shows the Physical Address of the Parallel Port on

the Calibrating Computer.

 68

Figure 60. Pin Diagram of the Parallel Port.

Function Output Word in Hexadecimal Output Word in Binary

Pump ON 0x02 00000010

Open Valve 0x01 00000001

Pump OFF / Close Valve 0x03 00000011

Table 12. Output Words used to Control the Pump and the Opening Valve.

b. Pump and Valve Control Algorithm

During the calibration process, a number of data points are collected at

various pressure points. A closed control loop is input with the PPC sensor reading and

the target pressure reading to control the pump and the opening valve, as shown in

Figures 61-62. If the PPC sensor reading is less than 95% of the target pressure, the

pump will be turned ON, while the opening valve remains closed. If the PPC sensor

reading is more than 105% of the target pressure, the opening valve will be opened, and

the pump is turned OFF. The loop is repeated every two seconds, until the target pressure

reading is reached.

 69

Figure 61. Front Panel of the subVI PumpTo.vi.

.

 70

Figure 62. Block Diagram of the subVI PumpTo.vi.

c. Calibration Algorithm

The calibration algorithm begins by determining the number of data points

to be collected based on the reading range of the sensor, as shown in Table 13. The jump

step, the space between two consecutive collected data points is then calculated by

rounding down the ratio of (Reading Range)/(Number of Data Point). The next target

pressure reading is calculated by adding the current target pressure reading with the jump

step. It is then input to the subVI PumpTo.vi to apply that newly calculated pressure on

 71

the sensor. Sensor readings of the target sensor and the standard sensor (PPC) are

collected and stored in an array. After all data points are collected, the new calibration

constants are calculated by the subVI NewCalConstant.vi (Figures 63-64), using the

current calibration constants and the result of the linear fit of PPC sensor readings versus

the target sensor readings. The previous calibration constants are updated with the

current calibration constants, and the current calibration constants are updated with the

new calibration constants. A record of the new calibration constants and collected data

points are stored in the sensor data file by the subVI SaveCalConst.vi (Figures 68-69).

Finally, they are sent to the web server computer in same format as shown in Tables 14,

where the calibration constants are inserted into the same locations reserved for the

readings of the target sensor and the standard sensor (PPC).

Sensor Reading Range in PSI

Range = Max Reading – Min Reading

Number of Data Points to be Collected

80-100 5

40-79 4

20-39 3

Less than 20 0 (No Calibration)

Table 13. Number of Data Points for each Reading Range.

 72

Figure 63. Front Panel of the subVI NewCalConst.vi.

 73

Figure 64. Block Diagram of the subVI NewCalConst.vi.

Figure 65. Front Panel of the subVI SaveCalConst.vi.

Figure 66. Block Diagram of the subVI SaveCalConst.vi.

 74

 Message
1

Reading
1

Message
2

Reading
2

Message
3

Reading
3

Message
4

Reading
4

Data
Written

301 Current
Slope of
Sensor 1

300 Sensor
Reading
3

300 Sensor
Reading
3

301 Current
Offset of
Sensor 1

Size in
bytes

2 8 2 8 2 8 2 8

Data
Type

Unsigned
Short

Double Unsigned
Short

Double Unsigned
Short

Double Unsigned
Short

Double

Table 14. The Detail Format of the UDP Packet’s Payload that is used to send
Calibration Constants of Sensor 1 to the Web Server Computer.

 75

V. RESULTS AND LESSONS LEARNED

A. INTRODUCTION

Previous chapters have covered the algorithm, hardware, and software used to

design and implement the automatic web-base sensor calibration system. This chapter

sequentially analyzes the final product and design process from start to finish.

B. THE CONCEPT

This research was conducted with four main objectives. First is to reduce the

personnel requirement by at least 50 percent. Second is to reduce the calibration time as

much as 75 percent compared to the current calibration procedure used by the US Navy.

Third is to further automate the calibration process, and provide a user friendly, web-

based GUI to guide an operator through the calibration process. Fourth is to take

advantage of the web technologies to allow operators to calibrate any selected shipboard

sensor from anywhere on the world-wide-web. To safeguard the calibrating computer

from a possible network attack, a second computer is used to host the web server and web

pages. This means that three links of communication must be maintained at all time:

between the calibrating computer and sensors, between the calibrating computer and the

web server computer, and between the web server computer and the operator at some

remote location. The sensor data flows from sensors to the calibrating computer, next to

the web server computer, and finally to the operator. The commands from the operator

flow in the reversed direction. The final demonstrated result is only 70 percent of the

total work that had been put in the project. A good portion of the work had to be

discarded due to unforeseen restrictions and additional requirements.

C. THE BEGINNING

Initially, the calibrating computer communicates with sensor via a variety of

interfaces: Ethernet (RJ-45), RS-232, and Bluetooth. The decision is made to use the

Vlinx RS232-to-ethernet adapter to convert all RS-232 and RS-485 interfaces to Ethernet.

This new approach allows the calibrating computer to query sensors’ readings via a

 76

single Ethernet interface instead of three different types of interfaces. This also makes it

much easier to communicate with sensors, because they all begin with a TCP connection

to the Vlinx RS232-to-ethernet adapter. A sensor interface module can easily be

modified to interface with another sensor that also uses the Vlinx RS232-to-ethernet

adapter for integration with the ship’s LAN.

After detail analysis, it is found that most of the steps in the calibration process

can be automated by software, except controlling the pressure applied on sensors.

Initially, the PPC was used to manually pump or release pressure on sensors. This step

could not be automated by software with the current hand pump. A decision was made to

purchase the electrical pump and the solenoid valve. Two separate controller circuits

were built in house to digitally turn on/off the power to the electrical pump and

open/close the opening valve. The calibrating computer interfaces with the controller

board via the parallel port. A closed-loop calibrating subVI was then developed to allow

the operator to calibrate the selected sensor. The subVI was tested successfully with

simulating data received from the web server computer, which was not yet supported by

the web server computer. The automatic calibration is, therefore, only available locally at

this time.

At this stage of the development, the concept of communication between the

calibrating computer and the operator was relied on the TCP server running at all times

on the web server computer. The TCP server is a server on port 4001, and a client on

port 1512. When started, it initiates a TCP connection with the calibrating computer on

port 1512 to get sensor readings. When a sensor web page is accessed by an operator, a

Java applet is downloaded and run on the operator’s computer. At initialization, this

applet initiates a TCP connection to the TCP server on port 4001 of the web server

computer. The project was almost complete based on this concept. The concept was

working beautifully when demonstrated on NPS campus, and VPN connection. The

sponsor at NAVSEA, however, was unable to see the demonstration. A series of tests

was run, and it was determined that both the sponsor and the web server are on two

separate secured networks. The firewall only allows the bidirectional traffic on port 80.

Port 80, however, was used by the Internet Information Server (IIS) component of the

 77

Window XP operating system to provide web service to clients. The TCP server can not

use the same port to communicate with the applet.

D. THE ADJUSTMENT PHASE

It is decided that the project needs to rely on a different communication concept to

communicate with the applet running on the operator’s computer. The new

communication is found, but the change is quite radical. It discounts 90 percent of the

work done on the web server computer, and 20 percent the work done on the calibrating

computer. The new communication concept uses servlets and POST requests to establish

communication between the applet and the calibrating computer. The IIS, however, does

not support this feature. Therefore, it is replaced by the Tomcat web server, which can be

downloaded at no cost at http://tomcat.apache.org. With the Tomcat web server, the

bidirectional communication is re-established using POST requests and Java servlets.

The new concept requires the calibrating computer to periodically send UDP packets

containing sensor readings to the web server computer. When accessed by the operator,

the applet periodically sends the POST commands to the web server, which invokes the

servlet to response with sensor readings. The applet, then, extracts the sensor reading

from the responses and displays them on the strip chart. A command button was added to

the applet to allow operator sending calibration command to the calibrating computer. A

small modification was made on the calibrating computer to integrate with this new

function. The integration works seamlessly on the first time being integrated with the

servlet. This time the sponsor at NAVSEA, San Diego Corona, CA is not only able to

see the live update of sensor readings of a sensor located at Naval Postgraduate School,

500 miles away, but he is also able to calibrate it by one simple mouse click on the

“calibrate” button on the browser. Two to three minutes, after clicking on the calibrate

command button, the target sensor is calibrated, and the new calibration constants are

saved on the hard drive of the computer. Comparing to the current calibration procedure,

this is at least 90 percent improvement in calibration time. In the calibration process

currently used by US Navy, three minutes are not even enough to hand pump the pressure

to the first desired pressure point of the data collection process. At this point, all

objectives listed in the executive summary have been met.

 78

E. THE FINISHING TOUCHES

The same concept is further expanded to add the view of a web camera, and

additional command buttons to allow the operator to see the lab setup, apply different

pressures on sensors and request for calibration constants. With the manual control of the

pump and the opening valve, the operator can control the pressure applied on the sensors

to verify the result of the calibration. A reset button is also added to allow the operator to

undo the result of the calibration, so the calibration process can be demonstrated again.

The automatic web-base calibration system is made to be available online 24/7 for any

NPS student, staff, or registered users. Non NPS users need to register their IP address to

ITACS before being allowed to access the web site. This is the initial security measure to

protect the system from the possible network attack.

F. LESSONS LEARNED

Quite a few lessons are learned throughout the development process. The five

most important ones are:

• New features and functions must work with the existing system

• Unforeseen problems

• Strength and Weaknesses of Labview Programming Language

• Synchronization is important

• Poor performance on the NCAP box

1. Working with the Existing System

A new function or capability, regardless how advance it is, is usually useless if it

does not interoperate with the existing system. Unfortunately, this is the common

mistake made by developers. A lot of efforts is spent on developing new and advanced

features. The interoperability is often under emphasized. Fortunately, in this project, the

problem was detected early in the development process and corrected in time to

demonstrate the feasibility of the project.

 79

2. Unforeseen Problems

In many projects, major delays are caused by unforeseen problems. This project

is no exception. Not knowing that the firewall restrictions are applied on both the virtual

ship’s network and the operator’s network had discounted a good portion of the previous

work. In the business world, this would translate into additional cost, missing deadline,

and possible loss of contract. It is very important to make sure that all requirements are

considered before initiating development, because changing requirements during

development process can be very costly.

3. Strength and Weakness of Labview Programming Language

Labview is an excellent tool to interface with peripheral devices. Its graphical

programming concept is easy to learn to program and to understand the existing code. If

designed properly, Labview code can be highly reusable. Features provided by Labview

make software reusability, portability, and multi-threading programming a lot easier than

other programming languages. Their nice features, however, don’t come without a cost.

The major problem that almost every Labview developer faces is the backward

compatibility problem. Labview software designed in older version of Labview

development software no longer works on a different versions of Labview run-time

engines. The graphical programming concept takes more time to modify or develop

complex software.

4. Synchronization

In a complex system, synchronization is very important. Without

synchronization, subsystems won’t be able to work together to perform more complex

tasks. In this project, there is a high demand for synchronization on the connectionless

communication between the calibrating computer and the web server computer. There is

a good chance that UDP packets sent by the web server computer are not received by the

calibrating computer or UDP packets sent by the calibrating computer not received by the

web server computer. This implies that a connection between the operator and the

 80

sensors calibration system is interrupted or lost. This problem is quickly corrected by

making sure the receivers wait at least three to five times the transmission interval before

timing out.

5. NCAP Box Performance Problem

The NCAP box was working fine with the software developed by NPS students.

It does not perform like an embedded system when loaded with a Labview software

package developed by 3eTI. At boot up, Window XP Embedded pops up a window

indicating that the hard disk space is low. The software continues to run after the OK

button is clicked. After five minutes, Window XP Embedded, again warns that the

virtual memory is running low, and the Labview software package is frozen. A new

NCAP box with latest software package is currently on order.

 81

VI. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY

This research has demonstrated the feasibility of an automatic web-based sensor

calibration concept. With a strong emphasis on the uses of software, current networking

technologies and commercial-off-the-shelf products, the tedious work of calibrating a

sensor can be replaced by a few mouse clicks on a web browser. This allows an operator

to calibrate a sensor from thousands of miles away.

B. CONCLUSION

After extensive testing and demonstration, it is concluded that this research has

achieved all objectives listed in the executive summary. The results from testing and

demonstration are quite optimistic. With this new concept of calibration, very little effort

is required from the operator to calibrate a sensor, and the operator is not even required to

be on the ship. The result of this research appears to provide good approach to tackle the

problem of calibrating the ever-increasing number of sensors used on new ships.

C. RECOMMENDATION

The current work has demonstrated a high degree of feasibility and operational

efficiency. There are, however, many opportunities for improvement. Future work needs

to focus on portability, interoperability, and the network security aspects of the project. It

is also important to develop a robust software architecture to collect readings from

thousands of sensors.

1. Portability

The very nature of the sensor calibration business is its portability. The smaller,

the lighter, and the fewer of connected wires the better. This concept needs to be applied

on the automatic web-base sensor calibration system as much as possible using the COTS

products and current technologies. The portability of the current work can be improved

as following:

 82

• Replace the AC powered pump with a DC powered pump

• Use batteries to power the pump, standard sensor, embedded computer, and

the opening valve

• Use an IEEE 802.11 capable embedded computer system to control the pump

and the valve via digital I/Os

• Use an IEEE 802.11 capable ultra-mobile PC to run the web server and host

web pages

This new concept would reduce the current one-hundred pound automatic web-based

calibration system to a fifteen-pound system. The size would be reduced from ten cubic

feet to two cubic feet. With this improvement, the operator could bring on board the ship

a light weight and self contained system that only requires a pipe connection to the target

sensor and wireless access to the ship’s LAN. This type of system would be much more

deployable than the current system.

2. Interoperability

Higher interoperability implies easily deployable and shorter integration time.

Future study needs to focus on the interoperability between the automatic web-based

sensor calibration system and the existing hardware and software currently used on the

ship. The software also needs to interoperate with other software used by SYSCAL, and

provide answers to questions such as what software SYSCAL uses to store the calibration

constants and what data format it expects if automated data entry is available.

Interoperability with other software currently used by SYSCAL would prove that the

automation concept could be expanded beyond the ship.

3. Network Security

Network security has always been a concern for network administrators and users.

The availability of an automatic web-based sensor calibration system to a remote user

also exposes the ship’s LAN to external threats. The data exchange between users and

web server could be altered or imitated by malicious hackers. Additional studies on this

 83

problem are needed. A quick way to solve this problem is to encode and decode all data

exchanges between operators and the web server. A better approach would be

incorporating the current security technology adopted by US Navy.

4. Robust Software Architecture

A robust software architecture is important in developing a complex and

evolving software. All requirements and restrictions need to be carefully considered

before laying down the software architecture, including possible additional functions for

the later versions of software. One area that needs special attention is the multi-thread

feature. The current architecture uses a separate thread for each sensor. This

architecture, however, might face implementation problems when the number of sensors

increases to hundreds or thousands. A different software architecture is needed to

efficiently allocate CPU resources, so the system can maintain its reliability in the

shipboard environment.

It is also important to choose a software development tool and platform that

requires minimal efforts for modification or scalability. It is highly recommended that

the C/C++ compiler running on Window environment is used for software development.

C/C++ language offers the following advantages:

• Multi-thread programming are easy to implement

• Network programming and peripheral interface can be easily done

• There are a lot of available resources on the web

• Less effort is required for modification and scalability

• No incompatibility between different versions

All the advantages, however, do not come without a cost. The disadvantages of

using programming in C or C++ are:

• It is a little more difficult (compared to Labview) to learn to program in C or

C++

 84

• It is more difficult to determine the logic implemented by another programmer

The disadvantages can be compensated by proper documentation of the code and

good software development discipline.

 85

APPENDIX - JAVA CODES

A. IMAGESERVLET.JAVA

/* This is the ImageServlet.java, which reads a jpg image file
 * and sends over to the calling Applet.
 * Version 1.0
 * June 27, 2007
 * by Xiaoping Yun
 */

import java.io.*;
import java.awt.*;
import java.awt.image.*;
import javax.servlet.ServletException;
import javax.servlet.http.*;
import javax.servlet.*;
import javax.imageio.*;

public class ImageServlet extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType("application/octet-stream");

 try {
 File f = new File("C:\\Inetpub\\ftproot\\live\\image900.jpg");

 BufferedImage bufi = ImageIO.read(f);

 OutputStream os = response.getOutputStream();
 if (bufi != null) { ImageIO.write(bufi, "jpg", os); }

 os.flush();
 os.close();

 } catch (Exception e) {
 //e.printStackTrace();
 System.out.println("Error reading the image file. "); }
 }

}

B. IMAGEAPPLET.JAVA

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

 86

import java.net.*;
import java.util.Date;

import java.awt.image.*;
import javax.imageio.*;

//

public class ImageApplet extends Applet implements Runnable {
 BufferedImage bufi;
 Font f = new Font("TimesRoman",Font.BOLD, 14);
 Date theDate;
 Thread imageLoadingThread;

///
 public void init() {

 }

///
public void start() {
 if (imageLoadingThread == null) {
 imageLoadingThread = new Thread(this);
 imageLoadingThread.start();
 }
}

//
public void stop () {
 if (imageLoadingThread != null) {
 imageLoadingThread.stop();
 imageLoadingThread = null;
 }
}

//

public void run() {
 while (true) {
 theDate = new Date();
 onSendData();
 repaint();
 try {
 Thread.sleep(400);
 } catch (InterruptedException e) { }
 }
}
///
public void paint(Graphics g) {
 g.setFont(f);
 g.setColor(Color.red);
 g.drawImage(bufi,0,0,this);
}
//
public void update(Graphics g) {

 87

 paint(g);
}
///
private void onSendData() {
 try {
 // get input data for sending
 String input = "test 123";

 // send data to the servlet
 URLConnection con = getServletConnection();

 OutputStream outstream = con.getOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(outstream);
 oos.writeObject(input);
 oos.flush();
 oos.close();

 // receive result from servlet
 InputStream instr = con.getInputStream();

 bufi = ImageIO.read(instr);

 } catch (Exception ex) { ex.printStackTrace(); }
 }
//
private URLConnection getServletConnection()
 throws MalformedURLException, IOException {

 URL urlServlet = new URL(getDocumentBase(), "image2");
 URLConnection con = urlServlet.openConnection();
 con.setDoInput(true);
 con.setDoOutput(true);
 con.setUseCaches(false);
 con.setRequestProperty(
 "Content-Type",
 // "application/x-java-serialized-object");
 "application/octet-stream");
 return con;
 }
}

C. SENSORSERVLET.JAVA

//
// Program: SensorServlet.java
// Programmer: Xiaoping Yun and Charles Le
// Input: UDP packets from the calibrating computer, request from client,
// and empty response to client
// Output: update response to client, and forward POST request to
// the calibrating computer
// Description: This program is invoked by the web server to service a POST
// request from client.
// 1) First step: It checks the received and store sensor reading

 88

// received from the calibrating computer.
// 2) Second step: extract content of the POST request, stuff
// the content to UDP package and send to the
calibrating
// computer. Only the CALIBRATING command has a
full length
// packet of 20 byte. Most of the packet is only 2 byte
long
// 3) Third step: Send stored sensor reading to the applet
//

import java.io.*;
import java.net.*;
import java.util.*;

import javax.servlet.ServletException;
import javax.servlet.http.*;

/**
 * SensorServlet.
 */
public class SensorServlet extends HttpServlet {

 //Define constants
 private short SEND_SENSOR_READING = 400;
 private short CALIBRATE_SENSOR = 401;
 private short START_PUMP = 402;
 private short STOP_PUMP = 403;
 private short OPEN_VALVE = 404;
 private short CLOSE_VALVE = 405;
 private short RESET_SENSOR = 406;
 private short LABVIEW_SERVER_PORT = 1512;
 private short SENSOR_SERVLET_PORT = 1511;
 private short MAX_SENSOR_NUMBER = 4;
 private short STANDARD_SENSOR_ID = 3;
 private short UDP_RX_BUFF_SIZE = 40; // this is exactly for 4 sensors
 private short UDP_TX_BUFF_SIZE = 1024;
 private short DEBUG = 0; //set to 1 for debug messages
 private short UDP_TIME_OUT = 12000;

 DatagramSocket ReceiveFromLabviewSocket;
 DatagramSocket TxToLabviewSocket;
 byte[] buffer = new byte[UDP_RX_BUFF_SIZE];
 byte[] txbuffer = new byte[UDP_TX_BUFF_SIZE];
 InetAddress LabviewServerAddress;
 DatagramPacket packet, txpacket;

 short sensorID; // received from applet.
 short sensorCommand; // received from applet.
 double minReading = 0.0;
 double maxReading = 100.0;
 double[] sensorValueDouble = new double[MAX_SENSOR_NUMBER];

 89

 short[] sensorStatus = new short[MAX_SENSOR_NUMBER];

 //
 // Function init()
 // Programmer: Xiaoping Yun and Charles Le
 // Input:
 // Output:
 // Description: This function creates an UDP socket to the calibrating computer
 // IP = 192.168.2.88, port=1511
 //
 public void init()
 {
 try {
 ReceiveFromLabviewSocket = new DatagramSocket(SENSOR_SERVLET_PORT);
 ReceiveFromLabviewSocket.setReceiveBufferSize(UDP_RX_BUFF_SIZE);
 //ReceiveFromLabviewSocket.setSoTimeout(12000);

} catch (SocketException e) {System.out.println("Failed to open UDP socket on port
1511."); }

 try {
 TxToLabviewSocket = new DatagramSocket(LABVIEW_SERVER_PORT);
 LabviewServerAddress = InetAddress.getByName("192.168.2.88");
 } catch(UnknownHostException e){ System.out.println(e); }
 catch(IOException e){ System.out.println(e); }
 //catch (InterruptedException e) {}
 }

 //
 // Function doPost()
 // Programmer: Xiaoping Yun and Charles Le
 // Input: request from client, and empty response to client
 // Output: update response to client
 // Description: This function is called by the web server to service a POST
 // request from client.
 // 1) First block: It checks the received and store sensor reading
 // received from the calibrating computer.
 // 2) Second block: extract content of the POST request, stuff
 // the content to UDP package and send to the calibrating
 // computer. Only the CALIBRATING command has a full length
 // packet of 20 byte. Most of the packet is only 2 byte long
 // 3) Third block: Send stored sensor reading to the applet
 //
 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {

 try { // receive sensor data from UDP Server of the calibrating computer

 ReceiveFromLabviewSocket.setSoTimeout(12000);
 packet = new DatagramPacket(buffer, buffer.length);

 90

 ReceiveFromLabviewSocket.receive(packet);

 ByteArrayInputStream byteIn = new ByteArrayInputStream (packet.getData());
 DataInputStream dataIn = new DataInputStream (byteIn);

 for (int i=0; i<MAX_SENSOR_NUMBER; i++) {
 sensorStatus[i] = dataIn.readShort();
 sensorValueDouble[i] = dataIn.readDouble();
 }
 } catch (IOException e)
 {
 System.out.println("UDP connection timeout.");
 for (int i=0; i<MAX_SENSOR_NUMBER; i++) {
 sensorStatus[i] = 0;
 sensorValueDouble[i] = 0.0;
 }

 }

 // Forward POST request to the calibrating computer
 try {

 response.setContentType("application/x-java-serialized-object");

 // read data sent by applet.
 InputStream in = request.getInputStream();
 ObjectInputStream inputFromApplet = new ObjectInputStream(in);

 sensorCommand = inputFromApplet.readShort();
 sensorID = inputFromApplet.readShort();

 // print out the command sent by applet and sent it to Labview server.
 if (sensorCommand == CALIBRATE_SENSOR) {
 minReading = inputFromApplet.readDouble();
 maxReading = inputFromApplet.readDouble();
 if (DEBUG>0)
 System.out.println("sensor Command: " + sensorCommand + "Sensor ID: " +

sensorID + " min: " + minReading + " max: " + maxReading);
 sendToLabview(CALIBRATE_SENSOR);
 }
 else if (sensorCommand != SEND_SENSOR_READING)
 {
 minReading = 0;
 maxReading = 0;
 if (DEBUG>0)
 System.out.println("sensor Command: " + sensorCommand + "Sensor ID: " +

sensorID + " min: " + minReading + " max: " + maxReading);
 sendToLabview(sensorCommand);
 }

 91

 // send data to applet
 OutputStream outstr = response.getOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(outstr);

 oos.writeShort(sensorStatus[sensorID]);
 if (DEBUG>0)
 System.out.println("sensorStatus["+sensorID+"] = "+ sensorStatus[sensorID]);
 oos.writeDouble(sensorValueDouble[sensorID]);
 oos.writeDouble(sensorValueDouble[STANDARD_SENSOR_ID]);
 oos.flush();
 oos.close();

 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 //
 // Function sendToLabview()
 // Programmer: Charles Le
 // Input: use class variables: CommandID, SensorID, minReading, and MaxReading
 // Output: Send those variable over UDP socket to the Labview Sensor Server
 // Description: This function send UDP packet to the Labview Sensor Server using

// the following format
 // <cmd ID> <Sensor ID> <minReading> <maxReading>
 // Size in bytes: [2] [2] [8] [8]
 //
 public void sendToLabview(short Cmd) {
 int i = 0, j=0;

 try {

 // Send data to Labview Server via UDP

 // Construct UDP payload
 ByteArrayOutputStream byteOut = new ByteArrayOutputStream();
 DataOutputStream dataOut = new DataOutputStream (byteOut);
 dataOut.writeShort(Cmd);
 dataOut.writeShort(sensorID+1); //convert sensor ID from 0-k to 1-(k+1)

 dataOut.writeDouble(minReading);
 dataOut.writeDouble(maxReading);

 // convert into byte array
 txbuffer = byteOut.toByteArray();

 //put payload buffer into the UDP packet and send it
 txpacket = new DatagramPacket(txbuffer, txbuffer.length, LabviewServerAddress ,

LABVIEW_SERVER_PORT);
 TxToLabviewSocket.send(txpacket);
 dataOut.flush();
 dataOut.close();
 }

 92

 catch(UnknownHostException e){ System.out.println(e); }
 catch(IOException e){ System.out.println(e); }
 //catch (InterruptedException e) {}

 }

}

D. SENSORAPPLET.JAVA

//**
// SensorApplet.java: Applet
//
// Version: 1.0
//
// Date: November 12, 2006
//
//
//**

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.io.*;
import java.util.*;

public class SensorApplet extends Applet implements Runnable
{

 Thread sensorThread = null;

 //Define constants
 private short SEND_SENSOR_READING = 400;
 private short CALIBRATE_SENSOR = 401;
 private short START_PUMP = 402;
 private short STOP_PUMP = 403;
 private short OPEN_VALVE = 404;
 private short CLOSE_VALVE = 405;
 private short RESET_SENSOR = 406;
 private short GET_CURR_CAL_CONST = 407;
 private short GET_PREV_CAL_CONST = 408;

 private short MSG_SENSOR_READING = 300;
 private short MSG_CURR_CAL_CONST = 301;
 private short MSG_PREV_CAL_CONST = 302;

 //private String dataSource; // the cgi URL
 // sensor ID: SmartSensor = 0, ISI = 1, analog = 2, Zigbee = 3
 // calibration = 400, ...

 93

 private short sensorID;
 private short sensorCommand = SEND_SENSOR_READING;
 private double minReading=0.0;
 private double maxReading=100.0;
 private short DataMsg = 300;
 private double CurrentSlope = 1.0;
 private double CurrentOffset = 0.0;
 private double PreviousSlope = 1.0;
 private double PreviousOffset = 0.0;
 private boolean CurrCalConstFlg = false;
 private boolean PrevCalConstFlg = false;

 private int m_speed = 5; // seconds between counter data retrievals (parameter)

 private Image offImage; // off-screen display for all
 private Graphics offGraphic; // zoomed displays

 private int chartWidth; // width of chart (grid) section in pixels (computed)
 private int chartHeight; // height of the chart (grid) section (parameter)
 private int xStep; // pixel length of line segments when plotting the data
(parameter)
 private int ySpace; // space above/below the max/min plotted values (parameter)

 private int appWidth; // applet widow width (computed)
 private int appHeight; // applet window height (computed)

 private String theCount = ""; // the data vallues read from the source on a given execution cycle
 private int cntWidth; // width of the y-axis labels (set now for 7 char max)
 private final int charSize = 12; // font info
 private final int halfCharSize = 6;
 private Dimension chartLLC; // position of the Lower Left Cornet of the grid
 private Dimension chartTLC; // Top Left Corner position
 private Dimension chartLRC; // Lower Right Corner position
 private Dimension chartTRC; // Top Right Corner position
 private Dimension maxLabelPos; // position of the max Y scals lebel
 private Dimension midLabelPos; // position id the mid Y scale label
 private Dimension minLabelPos; // position of the min Y scale label
 private Dimension cntLabelPos; // position of the current count (X axix) label

 private int[] theData; // the displayed data (a circular buffer)
 private int[] theData2;
 private int bufSize = 1; // number of elements in theData buffer
 private int inData; // index of the position of the next input element in theData
 private int outData; // index of the first output position in theData
 private boolean bufFull;

 private int chartMaxY; // Max Y value (in data Units)
 private int chartMinY; // Min Y value (in data units)

 private Font font1; // the font to be used
 private FontMetrics fontM;

 94

 int sensorValueInt;
 double sensorValueDouble;
 String sensorValueString;

 int standardValueInt;
 double standardValueDouble;
 String standardValueString;

 int CurrSlopeInt;
 String CurrSlopeString;
 int CurrOffsetInt;
 String CurrOffsetString;

 int PrevSlopeInt;
 String PrevSlopeString;
 int PrevOffsetInt;
 String PrevOffsetString;

 Random rnum = new Random();

 // Parameter names. To change a name of a parameter, you need only make
 // a single change. Simply modify the value of the parameter string below.
 //--
 private final String PARAM_sensorID = "sensorID";
 private final String PARAM_bufSize = "bufSize";
 private final String PARAM_chartHeight = "chartHeight";
 private final String PARAM_xStep = "xStep";
 private final String PARAM_ySpace = "ySpace";
 private final String PARAM_speed = "speed";
 private final String PARAM_minReading = "minReading";
 private final String PARAM_maxReading = "maxReading";

 public SensorApplet()
 {
 }

//
public void init()
{

 setLayout(new FlowLayout(FlowLayout.LEFT, 0, 0));
 Button calibrationButton = new Button("Calibrate");
 Button resetButton = new Button("Reset");
 Button StartPumpButton = new Button("Start Pump");
 Button StopPumpButton = new Button("Stop Pump");
 Button OpenValveButton = new Button("Open Valve");
 Button CloseValveButton = new Button("Close Valve");
 Button GetCurrCal = new Button("Current Cal. Const");
 Button GetPrevCal = new Button("Prev. Cal. Const");

 95

 add(calibrationButton);
 add(resetButton);
 add(StartPumpButton);
 add(StopPumpButton);
 add(OpenValveButton);
 add(CloseValveButton);
 add(GetCurrCal);
 add(GetPrevCal);

 calibrationButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 onButtonClick(CALIBRATE_SENSOR);
 }
 });
 GetCurrCal.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 onButtonClick(GET_CURR_CAL_CONST);
 }
 });
 GetPrevCal.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 onButtonClick(GET_PREV_CAL_CONST);
 }
 });

 resetButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 onButtonClick(RESET_SENSOR);
 }
 });
 StartPumpButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 onButtonClick(START_PUMP);
 }
 });
 StopPumpButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 onButtonClick(STOP_PUMP);
 }
 });
 OpenValveButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 onButtonClick(OPEN_VALVE);
 }
 });
 CloseValveButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 onButtonClick(CLOSE_VALVE);
 }
 });

 String param;

 96

 param = getParameter(PARAM_sensorID);
 if (param != null)
 sensorID = (short) Integer.parseInt(param);

 //System.out.println("SensorID: " + sensorID);

 //=================================
 param = getParameter(PARAM_speed);
 if (param != null)
 m_speed = Integer.parseInt(param);

 //=================================
 param = getParameter(PARAM_bufSize);
 if (param != null) {
 try {
 bufSize = Integer.parseInt(param);
 } catch (NumberFormatException e){
 bufSize = 1;
 }
 } else {
 bufSize = 1;
 }

 //=================================
 param = getParameter(PARAM_chartHeight);
 if (param != null) {
 try {
 chartHeight = Integer.parseInt(param);
 } catch (NumberFormatException e){
 chartHeight = 0;
 }
 } else {
 chartHeight = 0;
 }

 //=================================
 param = getParameter(PARAM_xStep);
 if (param != null) {
 try {
 xStep = Integer.parseInt(param);
 } catch (NumberFormatException e){
 xStep = 2;
 }
 } else {
 xStep = 2;
 }

 //=================================
 param = getParameter(PARAM_ySpace);
 if (param != null) {
 try {

 97

 ySpace = Integer.parseInt(param);
 } catch (NumberFormatException e){
 ySpace = 10;
 }
 } else {
 xStep = 10;
 }
 chartMinY = ySpace;
 chartMaxY = ySpace * 4;
 //=================================
 param = getParameter(PARAM_minReading);
 if (param != null) {
 try {
 minReading = Double.parseDouble(param);
 } catch (NumberFormatException e){
 minReading=0;
 }
 } else {
 minReading = 0;
 }
 //=================================
 param = getParameter(PARAM_maxReading);
 if (param != null) {
 try {
 maxReading= Double.parseDouble(param);
 } catch (NumberFormatException e){
 maxReading=0;
 }
 } else {
 maxReading = 0;
 }

 //=================================
 font1 = new Font("Arial", Font.BOLD, charSize);
 setFont(font1);
 fontM = getFontMetrics(font1);
 cntWidth = fontM.stringWidth("MMMMMMM");

 //=================================
 Dimension dim = getSize();
 appWidth = dim.width;
 appHeight = dim.height;

 if (chartHeight > 0) {
 chartWidth = (bufSize * xStep);

 chartLLC = new Dimension(cntWidth + 5, chartHeight + halfCharSize);
 chartTLC = new Dimension(chartLLC.width, halfCharSize);
 chartLRC = new Dimension(chartWidth + chartLLC.width, chartLLC.height);
 chartTRC = new Dimension(chartLRC.width, chartTLC.height);
 maxLabelPos = new Dimension(0, charSize);
 midLabelPos = new Dimension(0, (chartLLC.height + chartTLC.height) / 2
 + halfCharSize);
 minLabelPos = new Dimension(0, chartLLC.height + halfCharSize);
 cntLabelPos = new Dimension(chartLRC.width - (cntWidth / 2),

 98

 chartLLC.height + 5 + charSize);

 } else {
 chartWidth = 0;
 appHeight = charSize;
 }

 //=================================
 theData = new int[bufSize];
 theData2 = new int[bufSize];
 for (int i = 0; i < bufSize ; i++)
 { theData[i] = ySpace * 2; theData2[i] = ySpace * 2; }

 inData = 0;
 outData = 0;
 bufFull = false;
 //=================================

 //=================================

 resize(appWidth, appHeight);

}

///

public void paint(Graphics g)
{
 g.drawImage(offImage, 0, 50, null);
}

//

public final synchronized void update(Graphics g)
{
 // override the default update method in order to
 // use double buffering of the graphics and avoid
 // watching the screens be drawn

 int i, j;
 int xFrom, xTo, yFrom, yTo;

 // communicate with the servlet
 try {

 URLConnection con = getServletConnection();
 SendPOSTrequest(con, SEND_SENSOR_READING);
 ReceivePOSTresponse(con);

 99

 // get integer and string value of the sensor reading
 //for plotting purpose.
 sensorValueInt = (int) sensorValueDouble;
 String tmpString = Double.toString(sensorValueDouble);
 int positonofperiod = tmpString.indexOf('.');

 if (tmpString.length()>=positonofperiod+3) {
 sensorValueString = tmpString.substring(0, positonofperiod+3);
 }
 else
 {
 sensorValueString = tmpString;
 }

 // get integer and string value of the standard reading
 //for plotting purpose.
 standardValueInt = (int) standardValueDouble;
 tmpString = Double.toString(standardValueDouble);
 positonofperiod = tmpString.indexOf('.');

 if (tmpString.length()>=positonofperiod+3) {
 standardValueString = tmpString.substring(0, positonofperiod+3);
 }
 else
 {
 standardValueString = tmpString;
 }

 // get integer and string value of the Current Slope
 //for plotting purpose.
 CurrSlopeInt= (int) CurrentSlope;
 tmpString = Double.toString(CurrentSlope);
 positonofperiod = tmpString.indexOf('.');

 if (tmpString.length()>=positonofperiod+3) {
 CurrSlopeString = tmpString.substring(0, positonofperiod+3);
 }
 else
 {
 CurrSlopeString = tmpString;
 }

 // get integer and string value of the Current Offset
 //for plotting purpose.
 CurrOffsetInt= (int) CurrentOffset;
 tmpString = Double.toString(CurrentOffset);
 positonofperiod = tmpString.indexOf('.');

 if (tmpString.length()>=positonofperiod+3) {
 CurrOffsetString = tmpString.substring(0, positonofperiod+3);
 }
 else
 {
 CurrOffsetString = tmpString;

 100

 }

 // get integer and string value of the Current Slope
 //for plotting purpose.
 PrevSlopeInt= (int) PreviousSlope;
 tmpString = Double.toString(PreviousSlope);
 positonofperiod = tmpString.indexOf('.');

 if (tmpString.length()>=positonofperiod+3) {
 PrevSlopeString = tmpString.substring(0, positonofperiod+3);
 }
 else
 {
 PrevSlopeString = tmpString;
 }

 // get integer and string value of the Current Offset
 //for plotting purpose.
 PrevOffsetInt= (int) PreviousOffset;
 tmpString = Double.toString(PreviousOffset);
 positonofperiod = tmpString.indexOf('.');

 if (tmpString.length()>=positonofperiod+3) {
 PrevOffsetString = tmpString.substring(0, positonofperiod+3);
 }
 else
 {
 PrevOffsetString = tmpString;
 }

 } catch (Exception ex) {
 ex.printStackTrace();
 }

 if (offImage == null) {
 offImage = createImage(appWidth, appHeight);
 offGraphic = offImage.getGraphics();
 offGraphic.setFont(font1);
 }

 offGraphic.setColor(Color.white);
 offGraphic.fillRect(0,0,appWidth, appHeight);

 if (chartHeight > 0) {
 // draw the chart

 // get the new data value
 try {

 101

 //theData[inData] = Integer.parseInt(sensorValueString);
 theData[inData] = sensorValueInt;
 theData2[inData] = standardValueInt;
 } catch (NumberFormatException e){
 theData[inData] = ySpace;
 theData2[inData] = ySpace;
 }

 inData = (inData + 1) % bufSize;
 if (inData == bufSize - 1)
 bufFull = true;

 // adjust the min/max Y values and scale values
 // if needed to keep a good data resolution visible

 chartMaxY = ((getMaxData() / ySpace) * ySpace) + ySpace;
 chartMinY = ((getMinData() / ySpace) * ySpace);
 if (chartMaxY == chartMinY)
 chartMinY -= ySpace / 2;

 double yM = (((double) chartHeight) /
 (double)(chartMaxY - chartMinY));
 double yA = - ((yM * (double)chartMaxY) - (double)chartHeight);

 // now draw the labels

 offGraphic.setColor(Color.black);
 offGraphic.drawString(""+chartMaxY, cntWidth -
 fontM.stringWidth("" + chartMaxY), maxLabelPos.height);
 offGraphic.drawString(""+ (chartMaxY - ((chartMaxY - chartMinY)/ 2)),
 cntWidth - fontM.stringWidth("" + (chartMaxY / 2)), midLabelPos.height);
 offGraphic.drawString(""+chartMinY, cntWidth - fontM.stringWidth("" +
 chartMinY), minLabelPos.height);

 // now draw the grid
 offGraphic.setColor(Color.lightGray);
 offGraphic.drawLine(chartTLC.width - 3, chartTLC.height,

chartTRC.width, chartTRC.height);
 offGraphic.drawLine(chartTLC.width - 3, midLabelPos.height -
 halfCharSize, chartTRC.width, midLabelPos.height - halfCharSize);
 offGraphic.drawLine(chartTLC.width - 3, chartLLC.height, chartTRC.width,

 chartLLC.height);
 for (i = chartTLC.width; i <= chartTRC.width; i += xStep*2)
 offGraphic.drawLine(i, chartTLC.height, i, chartLLC.height + 3);

 // now Draw the Data
 offGraphic.setColor(Color.blue);

 // the data trace
 xFrom = cntWidth + 5;
 xTo = xFrom + xStep;

 for (i = outData, j = ((i + 1) % bufSize), yFrom = chartLLC.height -

 102

 (int)(((double)theData[outData]) * yM + yA); j != inData;
 i = ((i + 1) % bufSize), j = (j + 1) % bufSize) {

 yTo = chartLLC.height - (int)(((double)theData[j]) * yM + yA);
 offGraphic.drawLine(xFrom, yFrom, xTo, yTo);
 offGraphic.drawLine(xFrom, yFrom+1, xTo, yTo+1);
 yFrom = yTo;
 xFrom = xTo;
 xTo += xStep;
 }

 // trace the standard data
 offGraphic.setColor(Color.green);

 xFrom = cntWidth + 5;
 xTo = xFrom + xStep;
 for (i = outData, j = ((i + 1) % bufSize), yFrom = chartLLC.height -
 (int)(((double)theData2[outData]) * yM + yA); j != inData;
 i = ((i + 1) % bufSize), j = (j + 1) % bufSize) {

 yTo = chartLLC.height - (int)(((double)theData2[j]) * yM + yA);
 offGraphic.drawLine(xFrom, yFrom, xTo, yTo);
 offGraphic.drawLine(xFrom, yFrom+1, xTo, yTo+1);
 yFrom = yTo;
 xFrom = xTo;
 xTo += xStep;
 }

 if (bufFull)
 outData = (outData + 1) % bufSize;

 // finally, draw the cur data vert line and the count value
 xTo -= xStep;
 offGraphic.setColor(Color.red);
 offGraphic.drawLine(xTo, chartTLC.height, xTo, chartLLC.height + 3);

 // draw the legend
 offGraphic.setColor(Color.blue);
 offGraphic.drawString(sensorValueString + " Sensor Reading", 80, 10);

 offGraphic.setColor(Color.green);
 offGraphic.drawString(standardValueString + " Standard Reading",80,20);

 if (CurrCalConstFlg)
 {
 // draw the legend
 offGraphic.setColor(Color.blue);
 offGraphic.drawString(CurrSlopeString + " Current Slope",250, 10);

 offGraphic.setColor(Color.blue);
 offGraphic.drawString(CurrOffsetString + " Current Offset",250,20);
 }

 103

 if (PrevCalConstFlg)
 {
 // draw the legend
 offGraphic.setColor(Color.green);
 offGraphic.drawString(PrevSlopeString + " Previous Slope", 400,10);

 offGraphic.setColor(Color.green);
 offGraphic.drawString(PrevOffsetString + " Previous Offset",400,20);
 }

 }
 else {
 // just display the counter value
 offGraphic.setColor(Color.black);
 offGraphic.drawString(sensorValueString, 0, appHeight);
 }

 paint(g);
}

///

 private int getMaxData()
 {
 int max = Integer.MIN_VALUE;
 int i,j;
 if (!bufFull && inData == 1)
 return theData[outData] + ySpace;
 for (i = outData; i != inData; i = (i + 1) % bufSize)
 if (max < theData[i])
 max = theData[i];
 return max;
 }

//
 private int getMinData()
 {
 int min = Integer.MAX_VALUE;
 int i,j;
 if (!bufFull && inData == 1)
 return theData[outData] - ySpace;;
 for (i = outData; i != inData; i = (i + 1) % bufSize)
 if (min > theData[i])
 min = theData[i];
 return min;
 }

//

 104

 public void destroy()
 {

 }

///

 public String getAppletInfo()
 {
 return "Name: Sensor Applet \r\n" +
 "2007 by Xiaoping Yun and Charles Ler\n" +
 "Version 1.02.\r\n";
 }

//

public String[][] getParameterInfo()
{
 String[][] info =
 {
 {PARAM_sensorID, "String", "ID assigned to each sensor"},
 {PARAM_bufSize, "String", "size of the data buffer"},
 {PARAM_chartHeight, "String", "height in pixels of the chart section"},
 {PARAM_xStep, "String", "pixels per data element when plotted"},
 {PARAM_ySpace, "String", "space above/below the max/min data values"},
 {PARAM_speed,"String","number of seconds b/w counter data retrievals"},
 };
 return info;
}

//
 private URLConnection getServletConnection()
 throws MalformedURLException, IOException {

 // Assuming that html file containing this applet is
 // located at htpp://..../app/, then url-pattern
 // in web.xml should be /anything/echo2 or /anything/*
 // If the html file containing this applet is located at
 // http://.../app/test/, then url-pattern in web.xml should
 // be /test/anything/echo2.

 URL urlServlet = new URL(getDocumentBase(), "anything/sensorServlet");

 URLConnection con = urlServlet.openConnection();

 // konfigurieren
 con.setDoInput(true);
 con.setDoOutput(true);
 con.setUseCaches(false);
 con.setRequestProperty(
 "Content-Type",

 105

 "application/x-java-serialized-object");

 // und zurückliefern
 return con;
 }

//
 private void onButtonClick(short ButtonCmd) {

 System.out.println("Started the automated calibration ... ");

 // communicate with the servlet
 try {

 URLConnection con = getServletConnection();
 SendPOSTrequest(con, ButtonCmd);
 ReceivePOSTresponse(con);

 } catch (Exception ex) {
 ex.printStackTrace();
 }

 }

///
private void SendPOSTrequest(URLConnection con, short Cmd) {
 try {
 // send data to the servlet
 //URLConnection con = getServletConnection();
 OutputStream outstream = con.getOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(outstream);
 oos.writeShort(Cmd);
 oos.writeShort(sensorID);
 oos.writeDouble(minReading);
 oos.writeDouble(maxReading);
 oos.flush();
 oos.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
}
///
private void ReceivePOSTresponse(URLConnection con) {
 try {
 // receive sensor readings from servlet
 InputStream instr = con.getInputStream();
 ObjectInputStream inputFromServlet = new ObjectInputStream(instr);
 DataMsg = inputFromServlet.readShort();

 106

 //System.out.println(DataMsg + " DataMsg ");
 if (DataMsg==MSG_SENSOR_READING)
 {
 sensorValueDouble = inputFromServlet.readDouble();
 standardValueDouble = inputFromServlet.readDouble();
 }
 else if (DataMsg==MSG_CURR_CAL_CONST)
 {
 CurrentSlope = inputFromServlet.readDouble();
 CurrentOffset = inputFromServlet.readDouble();
 CurrCalConstFlg = true;
 }
 else if (DataMsg==MSG_PREV_CAL_CONST)
 {
 PreviousSlope = inputFromServlet.readDouble();
 PreviousOffset = inputFromServlet.readDouble();
 PrevCalConstFlg = true;
 }

 inputFromServlet.close();
 instr.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
}
///

public void start()
{
 if (sensorThread == null)
 {
 sensorThread = new Thread(this);
 sensorThread.start();
 }
}

//

public void stop()
{
 if (sensorThread != null)
 {
 sensorThread = null;
 }
}

//

public void run()
{

 107

 Thread thisThread = Thread.currentThread();
 while (sensorThread == thisThread)
 {
 try
 {
 repaint();
 thisThread.sleep(m_speed * 200);
 }
 catch (InterruptedException e)
 {
 stop();
 }
 }
} //end of run()

} //end of SensorApplet class

E. WEB.XML

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- General description of your web application -->
 <display-name>Echo Servlet</display-name>
 <description>
 Echo Servlet
 </description>

 <!-- define servlets and mapping -->
 <servlet>
 <servlet-name>sensorServlet</servlet-name>
 <servlet-class>SensorServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>sensorServlet</servlet-name>
 <url-pattern>/anything/sensorServlet</url-pattern>
 </servlet-mapping>

<servlet>
 <servlet-name>image2</servlet-name>
 <servlet-class>ImageServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>image2</servlet-name>
 <url-pattern>/image2</url-pattern>
 </servlet-mapping>
</web-app>

 108

THIS PAGE INTENTIONALLY LEFT BLANK

 109

LIST OF REFERENCES

[1] R. Rupnow, S. Perchalski, X. Yun, D. Greaves, and H. Glick, .“New Calibration
Standings for Next Generation Ship’s Monitoring Systems,” presented at the
Thirteenth International Ship’s Control Systems Symposium (SCSS). Orlando,
FL, 2003.

[2] C. Vern, “Sea Power 21, Projecting Decisive Joint Capabilities,” in Naval

Institute Proceedings, 2002, pp. 1-5.

[3] S. Perchalski, “Shipboard sensor closed-loop calibration using wireless LANS

and DataSocket transport protocols,” Washington Post, 7 May, 2002.

[4] E. Silva, “Network-Based Control, Monitoring, and Calibration of Shipboard

Sensors,” Master’s Thesis, Naval Postgraduate School, Monterey, California,
September 2003.

[5] Y. Noguchi, Rockville Firm Hoping to Help the Navy Go Wireless, Washington

Post, 7 May, 2002.

[6] 3e Technologies International, 3e-550I W-LION Industrial Wireless IO Node, 3e

Technologies International, 2002.

[7] 3e Technologies International, 3e-521N Series Wireless Dual Mode Gateway

User’s Guide, 3e Technologies International, 2002.

[8] CRYSTAL Engineering Corporation, PN: 2975 Rev A, XP2 Digital Test Gauge

Operational Manual, CRYSTAL Engineering Corporation, 2003.

[9] Honeywell, Precision Pressure Transducer PPT and PPTR User’s Manual

Version 2.4, Honeywell, Inc., 2000.

[10] OMEGA, PX202,PX203,PX205,PX212,PX213,PX215 Pressure Transducers

M2165/0395, Omega, 1995.

[11] Network I/O, NIOengine1ie, User’s Manual, Network I/O, Inc., 2005

[12] Linksys, Dual-Band Wireless A+G Broadband Router, Linksys, 2003

[13] B&B Electronics Manufacturing Company, Multi-Interface Ethernet Serial

Servers, B&B Electronics Manufacturing Company, 2004

 [14] D. Wallis, “Vibration Analysis via Wireless Network,” Master’s Thesis, Naval

Postgraduate School, Monterey, California, September 2007.

 110

THIS PAGE INTENTIONALLY LEFT BLANK

 111

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA

4. Professor Xiaoping Yun, Code EC/YX
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA

5. Professor Roberto Cristi, Code EC
Department of Electrical Engineering
Naval Postgraduate School
Monterey, CA

6. Professor Don Wadsworth, Code EC

Department of Electrical Engineering
Naval Postgraduate School
Monterey, CA

7. LCDR Ken Macklin, Code EC
Department of Electrical Engineering
Naval Postgraduate School
Monterey, CA

8. James Calusdian, Code EC

Department of Electrical Engineering
Naval Postgraduate School
Monterey, CA

